Epidermis & Dermis
Lectures Objectives

• Describe the layers of the epidermis and development of the integumentary system.
• Describe structure of the dermis, compare the structure and distribution of hair follicles, nails, sebaceous and sweat glands.
• Explain bases of skin color.
Introduction

• The organs of the **integumentary system** include the skin and its accessory structures including hair, nails, and glands, as well as blood vessels, muscles and nerves

• **Dermatology** is the medical specialty for the diagnosis and treatment of disorders of the integumentary system.
Structure of the Skin

• The skin (cutaneous membrane) covers the body and is the largest organ of the body by surface area and weight

• Its area is about 2 square meters (22 square feet) and weighs 4.5-5kg (10-11 lb), about 16% of body weight

• It is 0.5 – 4 mm thick, thinnest on the eyelids, thickest on the heels; the average thickness is 1 – 2 mm
Divisions of skin

- **Epidermis and derivatives** – (ectoderm)
 - Epidermis proper
 - Hair follicles
 - Nails
 - Glands
 - Sebaceous
 - Sweat (eccrine & apocrine)
 - Mammary
- **Dermis** – Corium (mesoderm)
 - Papillary layer – loose CT
 - Reticular layer – dense Ct
- **Subcutaneous** (hypodermis) subcutis (mesoderm)
 - Areolar CT
 - Fatty components
Development of the Integumentary System
Functions of Skin

- Major functions of skin
 - Protection
 - Thermoregulation
 - Excretion
 - Secretion
 - Sensory reception – communication
 - Immuno protection – there are more lymphocytes in the skin than in circulation
Functions of Skin

• Problems of burn victims exemplify the importance of skin.
• Patients with severe burns has
 – Loss of sensation to temperature
 – Pain and pressure
 – Ionic balance drastically off
 – Fluid loss
 – Wildly fluctuating body temperature (5-8 degrees)
 – Bacterial and fungal infections increase
Epidermis

- Most superficial layer of skin
- Cornified stratified squamous epithelium
Epidermis

• Tow major types of skin based on thickness of epidermis
 – **Thick skin** on non hairy surfaces (epithelium up to 1.0 mm)
 – **Thin skin** on most hairy surfaces of the body (epithelium generally 0.1 mm)

➢ Thick vs thin does not reflect true thickness of skin including dermis
 • Skin on the back called thin but actually is thickest when dermal layer is included
Cells of Epidermis

- Four cell types in the epidermis
 - **Keratinocytes** (squames) – production of keratin and water barrier. More than 90% of cells in epidermis
 - **Melanocytes** – pigment production less than 5% of cells in epidermis
 - **Langerhans cells** – immune response, 1-3% cells in epidermis
 - **Merkel cells** – sensory reception and local endocrine control, 1-3% cells of epidermis
Epidermis

- Differentiation of keratinocytes (cytomorphosis)
 - Change shape (flatten)
 - Lose organelles
 - Form fibrous proteins
 - Become dehydrated
 - Produce products that thicken plasma membranes
Layers (Strata) of the Epidermis

- Stratum corneum
- Stratum lucidum
- Stratum granulosum
- Stratum spinosum
- Stratum basale
Stratum Basale (Germinativum)

• The **mitotically active** layer which generate the keratinocytes and their derivatives (i.e. Merkel cells)
• Cells anchored to basal lamina via anchoring fibrils and hemidesmosomes
• Highest metabolic requirement of all layers
• Active synthesis of **tonofilaments**, formation of extensive number of **desmosomes**
• Cells assume **cuboid** profiles
• Two major cell types:
 – Stem cells
 – Keratinocytes
• This layer contain the most undifferentiated cells of epidermis
Stratum Spinosum

- **Polyhedral** cells
- Cells are firmly bound by the filament-filled cytoplasmic spines and desmosomes
- Active synthesis of tonofilaments which provides cytoskeletal framework
 - Tonofilaments insert into the cytoplasmic part of the desmosomes
- Appearance of **membrane-coated granule (MCG)** in upper portion of this layer
 - These are laminated structures
 - Key to formation of effective water barrier
 - **MCG** contain lamellar disks that are formed by lipid bilayers
- **Mitotic figure** frequent (up to 3%)
 - All mitosis are confined to the **malpighian layer** (both stratum basale and stratum spinosum)
Stratum Granulosum

• Presence of dense, refractile, basophilic granules of keratoxyalin which contain profilaggrin
• The basophilia is due to RNA within the granules (active sites of filaggrin synthesis)
• Tonofilaments have condensed into tonofibrils which are anchored in the matrix of the granules
• Many desmosomes present
• MCG are released into extracellular space
 – thicken external surface of membrane and seal adjacent membranes thus forming a water barrier (note no zonula occludens)
Stratum Lucidum

- Only in thickest skin
- Appears as transparent layer, no visible nuclei or organelles
- Sulfhydryl groups (-SH) replaced by disulfide bonds (S-S) thus forming cystine groups that cross linked and stabilize the keratin molecules
- Substance remaining in these cells called **eleidin**
 - Clear intracellular protein
 - Intermediary in formation of keratin from keratohyaline granules and tonofibrils
Stratum Corneum

- Plasma membranes thickened by previous emptying of MCG into intercellular space in the subjacent layer
- Desmosomes remain as membranous modifications
- All organelles lost
- Cells backed with keratin (tonofibrils embedded in matrix of keratoxyalin)
- Cell structure not evident
• Stages of keratinocytes development
 – Proliferation
 – Differentiation
 – Exfoliation

Usually 28-45 days for complete cycle

• Thin skin lacks well developed:
 – Stratum corneum
 – Stratum lucidum
 – Stratum granulosum
Pigmentation system

• Melanocytes
 – Appear as clear (neuron-like) cells within st. basale.
 • Do not form desmosomes with keratinocytes
 – Extend dendritic-like processes throughout st. spinosum
 – Same number of melanocytes in all races
 – Produce melanin
 – Transfer melanin to keratinocytes
 – Originate from neural crest
• Tyrosinase catalyzes conversion of tyrosine to 3,4-dihydroxyphenyalanine (DOPA) and conversion of DOPA to dopaquinone which eventually forms melanin
Pigmentation system

Stages of melanocyte melanogenesis (melanization of the melanosome; a membrane-limited body derived from Golgi apparatus)

- **Premelanosome**
 - Circular vesicle
 - Tyrosinase activity
 - Fine peripheral granules

- **Immature melanosome**
 - Ovoid vesicle
 - Tyrosinase activity
 - Parallel filaments 10 nm periodicity

- **Mature melanosome**
 - Internal structure obscured by melanin
 - Tyrosinase activity still present

- **Melanin granule**
 - Solid melanin
 - No tyrosinase activity
Pigmentation system

- Transfer of melanin from melanocyte to keratinocytes is by a process termed “Cytocrine secretion”
 - Injection by melanocyte of melanin granules into a keratinocyte (exocytosis coupled with endocytosis)
- Because of rapid transfer more melanin found in keratinocyte than melanocyte
Pigmentation system

- Melanin accumulate on sunny side of nucleus
 - protection of nucleus from UV
- Dark skin absorbs and disperse UV better than light skin
- Racial differences due to:
 - Degree of melanin dispersion
 - Lysosomal action on melanosomes
 - Light races- melanin rapidly broken down
 - Dark races- melanin granules more resistant within st. spinosum
- Tanning increase melanin concentration not number of melanosomes
Other causes of skin color

• Carotene in dermis
 – Yellow-orange pigment (precursor of vitamin A)
 – Found in stratum corneum & dermis

• Hemoglobin
 – Red, oxygen-carrying pigment in blood cells
 – If other pigments are not present, epidermis is translucent so pinkness will be evident
Langerhans cells

- **Appearance**
 - Clear cells, generally has a dendritic appearance

- **Location**
 - St. basale and spinosum,
 - Process extend toward surface

- **Act as antigen presenting cells with some phagocytic activity**

- **Absence of tonofibrils and desmosomes**

- **May contain melanin granules due to phagocytic activity of damaged keratinocytes**

- **Responsible for the initial allergic reaction due to contact hypersensitivity**

- **Bone marrow originated cell**
Merkel’s cells

- Merkel cell is modified keratinocyte
 - Has tonofibrils
 - Forms desmosome
 - Slow adapting
- Mechanoreceptor
 - Associated with sensory nerve endings
 - Catecholamine containing granules on dark side of nucleus, mechanogated channels
- Local release of neuropeptides can modulate vascular smooth muscle contraction. Hence Merkel cell has potential to play a paracrine function in immediate response to stimulus
Dermis

- Dermis – Corium
 - Papillary layer – loose CT
 - Reticular layer – dense Ct
Papillary Layer

- **Loose CT**
 - Delicate collagenous fibers,
 - Fewer reticular and elastic fibers
 - Fibers attach to basement membrane hence perpendicular to surface
- **Passage for vessels**
 - Direct nutritive responsibility for epithelium
- **Reticular lamina produced by cells in this layer**
 - Has an inductive effect on overlying epidermis
- **Route for ducts of sweat glands**

![Ultra structure of basement membrane](https://example.com/structure.png)
Papillary Layer

- **Dermal papillae**
 - More papillae in thicker epidermis
- **Pegs (rete ridges)**
 - Ridges alter topography of overlying epidermis to produce fingerprints
- **Site of Meissner’s corpuscles**
 - Important use in reading braille
Reticular Layer

• Major component (mass) of skin
• Dense fibrous CT highly interwoven
• Provide structural support for derivatives
 – Hair follicles
 – Associated glands
Hypodermis
(Subcutaneous Layer)

- Loose CT
- Serves for:
 - Protection
 - Fat storage
 - Houses
 - Secretory portion of eccrine sweat glands
 - Deep portions of the hair follicles
 - Frequent Pacinian corpuscles (pressure receptors) are found in this layer
- Not truly component of skin
 - Corresponds to superficial fascia
Eccrine Sweat Gland

- Not associated with hair follicles
- Sweat is cell product
 - Regulation of body fluid
 - Sweat secretion may lead to total dehydration (1-2 liter per hour)
 - Some elimination of body wastes
 - Regulate body temperature
 - Major source of evaporative heat loss
- Distributed over entire body
 - Absent in: glands penis, clitoris, labia minora
 - High concentration in: palms and soles
- Morphology – simple coiled tube (tubular) with ductal (smaller lumen) and secretory (larger lumen) portions
Eccrine Sweat Gland

- Secretory component – only in deepest dermis or hypodermis.
 - Lined with a simple epithelium of (two types) pyramidal cells
 - Clear serous cell
 - Base away from lumen
 - Large nucleus, pale cytoplasm
 - Involved in salt absorption and fluid transport
 - Many mitochondria, glycogen, and intercellular canaliculi
 - Dark mucous cells
 - Inverted pyramid, base toward lumen
 - Small nucleus
 - Basophilic
 - Involved in production of glycoproteins
 - Golgi apparatus
 - Thus nuclei of secretory portion appear at two levels like pseudostratified epithelium
Eccrine Sweat Gland

- Ductal component
 - Two concentric layers of cuboidal cells
 - Luminal surface appears thickened because of densely packed tonofilaments
 - Ductal cells separated from basement membrane (basal lamina) by incomplete layer of myoepithelia cells
 - Distal component of duct reabsorbs Na and Cl
Eccrine Sweat Gland

Two types of eccrine glands in terms of stimulus sensitivity

• Palmar – plantar
 – Increase secretion response to mental (emotional) state
 – Only minimal response to heat stress
 – Adrenergic

• General eccrine
 – Response predominantly to heat stress
 – Cholinergic
Apocrine Sweat Glands

- Component of Pilosebaceous Unit (hormonal control)
- Develops from distal region of hair follicle in embryo
- Atrophies on most follicles except in specific regions: axilla, external auditory meatus, eyelids, ano-genital areas
Apocrine Sweat Glands

- Morphology – simple tubular glandular epithelium, secretory coil in deep dermis, duct opens into distal hair follicle
 - Lumen of tube varies with functional state, but much larger than lumen of an eccrine sweat gland
 - Simple epithelium
 - when contracted (empty) appears simple cuboidal to low columnar;
 - when distended appears almost like simple squamous
 - All cells attached to basal lamina; however attachment not clear because basal lamina partially covered by incomplete layer of myoepithelial cell
Apocrine Sweat Glands

- Secretion appears apocrine “pinching off” of apical cytoplasm. EM reveals exocytosis
 - Secretion: viscous milky to clear, contains proteins, carbohydrates, ferric iron, fatty acids
 - Initially odorless – characteristic body odor formed after bacterial decomposition
 - Function unknown possibly bactericidal, or pheromone---amorous inclinations
 - Primarily adrenergic (emotional) stimulus for secretion, some cholinergic stimulus
Sebaceous Gland

- No nerve supply, only hormonal regulation
- Develops as portion of Pilosebaceous unit as a bud from the wall of a hair follicle below the apocrine gland within the dermis
- Prominent distribution over face, neck, upper chest and back.
- On upper back they are highly developed while the hair follicle remains rudimentary hence referred to as Sebaceous follicles
Sebaceous Gland

• Sebum – whole cell product (holocrine), almost entirely lipid
 – Secreted continually, not diurnally
 – Acts as a permeability barrier, bacteriostatic, fungistatic, pheromone
 – Acne – androgen increase which decreases estrogen activity

• Germinal epithelium layer adjacent to basal lamina
 – As cells form sebum they take on foamy appearance, lose nuclei and most visible organelles; center of gland most highly differentiated
Hair Follicles

• Pilosebaceous apparatus includes: hair follicle, sebaceous gland, apocrine sweat gland and smooth muscle

• Reduced importance of hair in human
 – Conserve body temperature
 – Protect against physical trauma
 – Provide sense of environment
 – Personal adornment
 – Functional reserve of epithelial cells after injury

• Variation with sexes. Same number hair follicles males and females (estimated 2 million) 100,000 on scalp. Difference in distribution between sexes
Hair types

Three types of hairs (1 preterm, 2 mature)

- **Lanugo** – lost shortly after birth
- **Vellus** – covers most of the body before puberty
 - Very fine non pigmented equivalent to lanugo
 - Follicle extend to mid dermis
 - Converted to terminal follicles after puberty in axillary and anogenital regions in both sexes
 - In males also have conversion on face extremities and trunk
- **Terminal** –
 - Coarse, pigmented, on scalp, eyelids, eyebrow
 - Follicle extends through dermis into hypodermis
 - Structure of terminal hair more complex (medulla and cortex)

- Keratinocytes do not undergo desquamation, they form hard keratin
Structure of Hair

- **Shaft -- visible**
 - Medulla, large, vacuolated and moderately keratinized cells
 - Cortex, heavily keratinized, compactly grouped fusiform cells
 - Cuticle,
 - Cuboidal midway up the bulb, then columnar.
 - Higher up, form flattened, heavily keratinized, shinglelike cells

- **Root -- below the surface**
- Follicle surrounds root
Structure of Hair

- Follicle surrounds root
 - **Internal root sheath**
 - Transient structure whose cells degenerate and disappear above the level of sebaceous gland
 - **External root sheath**
 - Continuous with the epidermal cells
 - **Glassy membrane**
 - Thickening of the basal lamina
 - **Connective tissue sheath**
 - Denser part of dermis surround the follicle
Structure of Hair

- Base of follicle is **bulb**
 - Dermal papilla
 - Blood vessels
 - Germinal cell layer
Hair Related Structures

- **Arrector pili**
 - Smooth muscle in dermis contracts with cold or fear.
 - Forms goosebumps as hair is pulled vertically

- **Hair root plexus**
 - Detect hair movement
Hair Growth

- The hair growth cycle consists of a growing stage and a resting stage.
 - Growth cycle = growth stage & resting stage
 - Growth stage (anagen)
 - lasts for 2 to 6 years
 - matrix cells at base of hair root producing length
 - Resting stage (catagen and telogen)
 - lasts for 3 months
 - matrix cells inactive & follicle atrophies
 - Old hair falls out as growth stage begins again
 - normal hair loss is 70 to 100 hairs per day
Hair Growth

- Male sex hormone (androgen) influence terminal hair follicles. In contrast, estrogen influences melanocytes.
- Both rate of growth and the replacement cycle can be altered by illness, diet, high fever, surgery, blood loss, severe emotional stress, and gender.
- Chemotherapeutic agents affect the rapidly dividing matrix hair cells resulting in hair loss.
Hair Color

• Hair color is due primarily to the amount and type of melanin.

• Graying of hair occurs because of a progressive decline in tyrosinase.
 – Dark hair contains true melanin
 – Blond and red hair contain melanin with iron and sulfur added
 – Graying hair is result of decline in melanin production
 – White hair has air bubbles in the medullary shaft
Structure of Nails

- Tightly packed keratinized cells
- Nail body
 - visible portion pink due to underlying capillaries
 - free edge appears white
- Nail root
 - buried under skin layers
 - lunula is white due to thickened stratum basale
- Eponychium (cuticle)
 - stratum corneum layer
Nail Growth

- Nail matrix is below nail root -- produces growth
- Cells transformed into tightly packed keratinized cells
- 1 mm per week
- Certain nail conditions may indicate disease