NERVOUS SYSTEM

- The most complex system in the human body
- Formed by network more than 100 million neuron
- Each neuron has a thousand **interconnection** → a very complex system for communication
- Nerve tissue is distribute throughout the body, anatomically divide into: **CNS & PNS**
- Structurally consist: **Nerve cells & Glial cells**
Anatomically divided into:

- NERVOUS SYSTEM
 - CENTRAL NERVOUS SYSTEM (CNS)
 - PERIPHERAL NERVOUS SYSTEM (PNS)
Functional Organization of the Nervous System

1. **Somatic** (conscious afferent* and efferent, voluntary motor control)
2. **Autonomic** (unconscious efferent, involuntary motor control of internal organs to maintain homeostasis)
 a. **Sympathetic** – thoracolumbar division
 b. **Parasympathetic** – craniosacral division

* Somatic afferents = sensory fibers from skin, muscle, joints, tendons.

Visceral afferents = sensory fibers from visceral organs; some result in conscious sensations, but others do not. However, they are not considered part of the autonomic nervous system, which is entirely efferent.

* Somatic afferent: Sensory fibers from skin, muscle, joints, and tendons.

Visceral afferents: Sensory fibers from internal organs, some of which may result in conscious sensations, but others do not. They are not considered part of the autonomic nervous system, which is entirely efferent.
Function of the nervous system

- Sensory input
- Sensory receptor
- Motor input
- Effector
- Integration

[Diagram of the nervous system showing sensory receptor, motor input, effector, and integration]
CONTENTS

- Cells of nervous system nerve cells and Neuralgia
- Synaptic communication
- Central nervous system & Peripheral nervous system & associated structure
Cellular Components of the Nervous System

- Neurons
- Glia (support cells)
Nervous Tissue: Support Cells

- Support cells in the Central Nervous System (CNS) are grouped together as neuroglia.
- Neuroglia literally means “nerve glue”.
- The function of neuroglia is to support, insulate, and protect the delicate neurons of the brain.
Neuroglial Cells

- Half of the volume of the CNS
- Smaller cells than neurons
- 50X more numerous
- Cells can divide
 - rapid mitosis in tumor formation (gliomas)

- 4 cell types in CNS
 - Astrocytes
 - Microglia
 - Ependymal
 - oligodendrocytes

- 2 cell types in PNS
 - Schwann
 - satellite cells
Types of Neuroglia in CNS

- **Astrocytes**
 - Star-shaped cells
 - Half of all brain tissue
 - Brace neurons; they keep the neurons in contact with their blood supply (capillaries)
 - Control the chemical environment of the brain by mopping up leaked ions
GFAP immunostaining for astrocytes
(Glial Fibrillary Acidic Protein)

The word astrocyte is derived from the Greek word ἄστρον = astron for star or star-shaped)

We will not deal with differences between fibrous (white matter) and protoplasmic (gray matter) astrocytes.
Types of Neuraglia in CNS

- **Microglia**
 - Spiderlike phagocytes (white blood cells)
 - Dispose of debris like dead brains cells and bacteria
Types of Neuroglia in CNS

- **Ependymal cells**
 - Lines the cavities of the brain and spinal cord
 - Circulate cerebrospinal fluid by beating their cilia
 - Cerebrospinal fluid fills the space the brain does not take up and forms a protective cushion around the brain and spinal cord
EPENDYMAL CELLS

- Forms the epithelial lining of ventricles and spinal cord.
- Cuboidal or low columnar in shape.
- Cells are bound at the luminal surface by epithelial junctional complexes.
- The bases of cells taper and break into fine branches which ramify into underlying layer of astrocytic processes.

FUNCTIONS

- Protection: Forms lining of the ventricles of the brain and central canal of the spinal cord. Forms cerebrospinal fluid (CSF).
- Aids circulation of cerebrospinal fluid (CSF).
Types of Neuroglia in CNS

- **Oligodendrocytes**
 - Wrap around nerve cells in the brain and spinal chord
 - Produce myelin sheaths
 - Myelin is a fatty, insulation covering the nerve cells; allows for the electrical signal to transmit faster (like wire coating)
Neuroglial Cells in the PNS

- 2 cell types in PNS
 - Schwann
 - satellite cells
Types of Neurologia in PNS

- **Satellite cells**
 - Protects neuron cell bodies which is where the nucleus of the cell if found
Schwann cells

- Form myelin sheath in the peripheral nervous system (nerves of the body; *not* nerves of the CNS)

(e) Sensory neuron with Schwann cells and satellite cells
NUCLEUS OF A SCHWANN CELL

MYELIN SHEATHS
Each Schwann cell myelinates a single internode

Internode length can be up to 1.5 mm in the largest nerve fibers
- Myelin sheath — whitish, fatty material covering axons
 - protects/insulates the cells and increases the transmission rate of nerve impulses
- Schwann cells — produce myelin
- Nodes of Ranvier — gaps in myelin sheath along the axon
The process of myelination
Nodes of Ranvier in a longitudinal nerve section
4. Oligo-dendrocytes

✓ Produce the **myelin sheath** which provides the electrical insulation for neurons in the CNS

5. Schwann cells

✓ Form myelin sheaths around the larger nerve fibers in the PNS.

✓ Vital for **neuronal regeneration**
So what’s a Neuron?

- Neurons = nerve cells
 - Cells specialized to transmit messages
 - Major regions of neurons
 - Cell body — nucleus and metabolic center of the cell (main part of nerve cell)
 - Processes — fibers that extend from the cell body
 - can be microscopic or up to 3-4 feet in length
So what’s a Neuron?

- Neurons = nerve cells
 - Cells specialized to transmit messages
 - Major regions of neurons
 - Cell body — nucleus and metabolic center of the cell (main part of nerve cell)
 - Processes — fibers that extend from the cell body
 - can be microscopic or up to 3-4 feet in length
NEURON

- **Axon Terminals** (transmitters)
- **Schwann's Cells** (they make the myelin)
- **Dendrites** (receivers)
- **Node of Ranvier**
- **Myelin Sheath** (insulating fatty layer that speeds transmission)
- **Cell Body**
- **Nucleus**
STRUCTURE OF NEURON

- Principle cells of Nervous Tissue
- Consist of 3 parts:
 - **CELL BODY** (perikaryon/soma)
 - A single **AXON**
 - Multiple **DENDRITES**
- ø 5-150 µm
Neurons

- Functional unit of nervous system

1. Cell body
 a) Nissl bodies
 b) Neurofilaments
 c) Microtubules
 d) Lipofuscin pigment clumps

2. Cell processes
 a) Dendrites
 b) Axons
FUNCTION OF NEURON

● Receptive
 ● Receptor receive stimuli and transduce into nerve impulse and transfer to other neuron

● Integrative
 ● Processing impulse on the higher center

● Motor
 ● Initiating motor response and transduce impulse to the effector
CELL BODY (PERIKARYON)

- Central portion of the cell
- Generally are polygonal
- Different shape and size → characteristic regions of nervous system
- Contain:
 - Nucleus
 - Perinuclear cytoplasm
ULTRASTRUCTURE OF NEURON

Nucleus:
- large, spherical to ovoid and centrally located
- a single prominent nucleolus
- finely dispersed chromatin
 → transcriptionally active

Cytoplasm:
- Abundant of R.E.R
- Polyribosomes
- Basic dyes (a+b) → Nissl Bodies
- lots of S.E.R.
- Golgi bodies (perikaryon)
 → protein secreting cell
ULTRASTRUCTURE OF NEURON

Cytoplasm

a. Many mitochondria, most abundant in axon terminal

b. Extensive cytoskeleton → axonal transport

c. One centriole → do not undergo cell divisions
Dendrites

- Conducts impulses towards the cell body
- Typically short, highly branched & unmyelinated
- Surfaces specialized for contact with other neurons
- Contains neurofibrils & Nissl bodies
Axons

- Conduct impulses **away** from cell body
- Long, thin cylindrical process of cell
- Arises at **axon hillock**
- Impulses arise from initial segment (**trigger zone**)
- Side branches (**collaterals**) end in fine processes called axon terminals
- Swollen tips called **synaptic end bulbs** contain vesicles filled with neurotransmitters
Structural Classification of Neurons

- Based on number of processes found on cell body
 1. **multipolar** = several dendrites & one axon
 - most common cell type
 2. **bipolar** neurons = one main dendrite & one axon
 - found in retina, inner ear & olfactory
 3. **unipolar** neurons = one process only (develops from a bipolar)
 - are always sensory neurons
Structural Classification of Neurons

(c) Unipolar neuron

(b) Bipolar neuron
NEURONS CLASSIFICATION:

Pyramidal (hippocampus)

Purkinje (cerebellum)
NEURONS CLASSIFICATION:

According to their function:

- **Sensory Neuron (afferent)**
 - Receive sensory input \rightarrow conduct impulses to CNS

- **Motor Neuron (Efferent)**
 - CNS \rightarrow conduct impulses to muscles, glands and other neurons

- **Interneuron**
 - In the CNS as interconnectors, establish neuronal circuit between sensory and motor neuron
NEURON GROUPING

● CORTEX
 ● Neuron form six layers on the cerebrum
 ● Form three layers on the cerebellum

● NUCLEI
 ● In subcortical region (thalamus, midbrain, brainstem and spinal cord) neuron form irregular cluster → nuclei

● GANGLION
 ● Cluster of neuron outside the CNS
THE CNS

- Consist of:
 - Cerebrum
 - Cerebellum
 - Spinal cord

- No connective tissue → soft, gel like

- When sectioned:
 - White matter
 - Gray matter

- Covered by meninges
Gray and White Matter

- **White matter** = myelinated processes (white in color)
- **Gray matter** = nerve cell bodies, dendrites, axon terminals, bundles of unmyelinated axons and neuroglia (gray color)
NERVE FIBERS

- Consist of axons enveloped by a special sheath
- Group of fibers constitute the **peripheral nerve**
- Two types:
 - Myelinated fiber
 - Unmyelinated fiber
NERVE FIBERS

- **Myelinated fibers**
 - A single Schwann cell wraps around single axon → form myelin sheath → nodes of Ranvier

- **Unmyelinated fibers**
 - A single Schwann cell envelopes several axon
 - Fibers enveloped within simple clefts of Schwann cells
CONNECTIVE TISSUE INVESTMENTS

- **Epineureum**
 - Dense collagenous Con. Tissue with thick elastic fiber
 - Prevent damage by overstretching

- **Perineureum**
 - Dense con. Tissue
 - Layers of epithelioids
 - Isolates neural environment (blood-nerve barrier)

- **Endoneureum**
 - Loose con. Tissue
 - Regulation of microenvironment of nerve fiber
Connective tissue layers in a peripheral nerve. Tight junctions between perineurium cells form an important isolating barrier.
PERIPHERAL NERVE

The epineurium encloses the entire nerve.

The perineurium encloses each fascicle and consists of concentric layers of connective tissue.

The endoneurium surrounds individual nerve fibers.

Schwann cell

Node of Ranvier

Internode

Axon

Myelin

Unmyelinated nerve fiber

Capillaries

Blood vessel

Epineurium

Perineurium

Fascicle

Nucleus of a Schwann cell
AUTONOMIC NERVOUS SYSTEM

SYMPATETIC SYSTEM

- The nuclei located in the thoracic and lumbar segment of spinal cord
- Preganglionic fibers leave the CNS by way of ventral roots
- The chemical mediator postganglionic fibers is norepinephrine

PARASYMPHATETIC SYSTEM

- The nuclei located in the medulla and midbrain and in the sacral portion of spinal cord
- Pre ganglionic fibers leave the CNS through cranial nerve III, VII, IX and X and also through II, III, IV sacral nerve
- The ganglion located near the effector organs
- The chemical mediator pre and postganglionic fibers is acethilcholine