Effector mechanism of humoral immunity

- Behring & Kitasato
- Ab + serum by diphtheria antitoxin serum

Humoral immunity - ultimate result of immune responses (Ab + memory cell)

Target by:
- Extracellular microbe + toxin
- Fungi
- Viruses

Effect of vaccine = Ab response

- Extra Ab
- vs distant site from production.
 - From lymph node, spleen, bone marrow
 - To blood, across mucosa to lumen, Peyer's patch in SI, across placenta (IgG)

Activation:
- Naive B-cell → Plasma cell
- Memory B-cell → Memory plasma cell

Plasma cell derived early (short lived) in B1, S marginal zone
- Late (long lived) for years. Most IgG in serum

- In exposed again (2)
 1. Ab in serum → Immediate response
 2. Memory cell activation

Function of Ab isotype

<table>
<thead>
<tr>
<th>IgG</th>
<th>IgM</th>
<th>IgA</th>
<th>IgE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opsonization</td>
<td>In naive B-cell</td>
<td>Mucosal immunity</td>
<td>Degranulation mast cell</td>
</tr>
<tr>
<td>Activates NK by Ab-dependent mediated</td>
<td>Active</td>
<td>Lectin + alternative pathway</td>
<td></td>
</tr>
<tr>
<td>Neonatal immunity</td>
<td>Classical pathway</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Isotype Switching

1. B-lymphocyte
 - IgM
 - IgG
 - IgA
 - IgE

2. Early plasma cell → late plasma cell

Major stimuli:
- T cell → cytokine
- TH-cell → CD40

Causes:
1. Virus + bacteria (TH1 response, IgG isotype)
2. Helminth (TH2, IgE Ab)

Function of Ab:
1. Neutralization of microbe/sti/s and toxin
2. Opsonization of phagocytosis by receptor
 - Fc gamma receptor
 - Affinity
 - Inhibitory, stimulate NK-cell
 - bind IgG 1/3
 - Induced by IFN-γ

Ab-dependent cell-mediated cytoxicity (ADCC)
- IgG
- NK-cell by bind to Fc (III) → then secrete (IFN-γ + killing molecule)
Ab clearance helminths by γ_2

- IgE & IgA → coat helminth bind to Fc receptor on eosinophil.

- IgE → little effect.
 - induce mast cell degeneration → mortality GI → bronchoconstriction → clearance.

- Mast cell attract eosinophil by cytokine & chemokine (IL-5)

* Vaccine induced humoral immunity *

- Active immunity (via inflammation)

 - Normal vs. Not normal

 - Vaccine

 - Polio vaccine
 - DTP
 - Hepatitis A & B
 - Hemophilia

* B-cell activation & Ab production *

- In secondary lymphoid organ: Concentrated + B-lymphocyte

 - B naive B-cell
 - Ag binds in (lymph node)

 - Follicular dendritic cell

- Secondary lymphoid organ trap Ag:
 - Blood borne Ag → in spleen.
 - Afferent lymphatic Ag → in lymph node.
 - Mucosal Ag → in MALT → Peyer patch (tonsil adenoid in naso-ph)
protection, protein peptide.

T-cell processing APC

MHC-II

B-cell

Ag

T-cell activation

paracortex in lymph node

periaortic lymph sheath in spleen

B-T collaboration

Thymus-dependent Ag

T-cell

B-cell-T-cell collaboration

Ag

AFC

AFC development

B-cell

cytokine

TH-cell

CD8 + DC

137-1

co-stimulates

B-cell

T-cell

para cortex plasma cell

memory

proliferation, affinity maturation, mutation (somatic hypermutation)

early activation

late activation

plasma cell

class switching

1st dendritic cell

B-cell

Ag

affinity

(+ selection)
1. Polyvalent → polysaccharide has multiple epitopes.
 Example: \(\beta(1,2\alpha + 6\beta) \)
 - Epitope → BCR vs. \(\text{Ag} \)
 - Cross linking BCR → Activation of B-cell

2. Alternative pathway (C3b → C3c) → Activation of B-cell by complement receptor on B-cell

- Characteristic of T1-Ag:
 1. Low affinity
 2. X affinity maturation
 3. Limit isotype switching to IgG
 4. High affinity
 5. Most polyvalent

- In B1 & B-margined zone → Macrophage in it is particularly efficient in trapping polysaccharide Ag.

- Secretory Ab
- X spleen → P infection with encapsulated bacteria:
 - H-influenzae, S-pneumonia, meningitis