Parasympathetic Nervous System
Lecture Objectives

• Make a list of the components of the system.
• Make a list of cranial nerves having parasympathetic activity.
• Describe the parasympathetic ganglia in the head and neck, their locations and target organs.
• Describe the sacral parasympathetic outflow.
• Make a list of its target organs.
Structure of the Parasympathetic Division

- Craniosacral division: Preganglionic neurons originate from
 - Brainstem through cranial nerves III, VII, IX and X
 - Sacral spinal nerves S2-S4
- Parasympathetic ganglia
 - terminal ganglia.
- Presynaptic neuron usually synapses with 4-5 postsynaptic neurons all of which supply a single visceral effector.
Autonomic Plexuses in the Thorax, Abdomen and Pelvis

Figure 15.05 Tortora - PAP 12/a
Copyright © John Wiley and Sons, Inc. All rights reserved.
Autonomic Plexuses

- A network of sympathetic and parasympathetic axons.
 - Cardiac plexus
 - heart.
 - Pulmonary plexus
 - the bronchial tree.
 - Esophageal Plexus
 - esophagus
 - Celiac plexus- largest.
 - Supplies the stomach, spleen, pancreas, liver, gallbladder, and adrenal medullae.
Autonomic Plexuses Continued..

- Superior mesenteric plexus
 - small intestine and proximal colon.
- Inferior mesenteric plexus
 - distal colon and rectum.
- Hypogastric plexus
 - urinary bladder and genital organs.
- Renal plexus
 - kidneys and ureters.
Cranial Parasympathetic Outflow

- Preganglionic neurons
 - III – Edinger-Westphal nucleus – rostral midbrain
 - VII – superior salivatory nucleus – caudal pons
 - IX – inferior salivatory nucleus – rostral medulla
 - X – dorsal nucleus of vagus – medulla
- Vagus nerve carries nearly 80% of the total craniosacral flow. (thoracic and abdominal viscera)
Cranial Parasympathetic Outflow

• Postganglionic neurons:

• In Head and Neck
 ➢ Reside in four pairs of ganglia
 • Ciliary ganglia (III)- ciliary muscles (lens adaptation) & iris (constrictor)
 • Pterygopalatine ganglia (VII)- lacrimal gland
 • Submandibular ganglia (VII)- submandibular and sublingual glands
 • Otic ganglia (IX)- parotid gland

• In Thorax and Abdomen
 • Terminal ganglia
 • Associated with the vagus nerve
Sacral Parasympathetic Outflow

• Consists of S2-S4.
• Pelvic splanchnic nerves → postganglionic neurons (hypogastric plexus or walls of viscera)
• Distal GIT (distal colon, sigmoid colon, rectum)
• Urinary bladder (voiding)
• Penis or clitoris (erection)
Pelvic splanchnic nerves

- Parasympathetic (S2-S4)
- Inferior hypogastric plexus
- Inferior mesenteric plexus
Hypogastric Plexuses

• Superior hypogastric plexuses
 • In front of promontory
 • Forms right & left hypogastric nerves

• Inferior hypogastric plexuses
 • Hypogastric nerves + pelvic splanchnic nerves
 • Lateral to rectum, bladder & vagina
Parasympathetic Afferent Fibers

• Follow the efferent pathway
• Cell bodies
 • Cranial part --- sensory ganglia of cranial nerves
 • VII ---- geniculate ganglion ---- temporal bone
 • IX ---- inferior (petrosal) ganglion ---- jugular foramen
 • X ---- inferior (nodose) ganglion ---- jugular foramen
 • Sacral part --- dorsal root ganglia of sacral spinal nerves
Sympathetic Responses

• Stress ↑ sympathetic system ↑ fight-or-flight response.
• ↑ production of ATP.
• Dilation of the pupils.
• ↑ heart rate and blood pressure.
• Dilation of the airways.
• Constriction of blood vessels that supply the kidneys and gastrointestinal tract.
Sympathetic Responses continued..

- ↑ blood supply to the skeletal muscles, cardiac muscle, liver and adipose tissue
- ↑ glycogenolysis ↑ blood glucose.
- ↑ lipolysis.
Parasympathetic Responses

• Rest-and-digest response.
• Conserve and restore body energy.
• ↑ digestive and urinary function.
• ↓ body functions that support physical activity.
Integration and Control of Autonomic Functions

- Direct innervation- brain stem and spinal cord.
- Hypothalamus is the major control and integration center of the ANS.
- It receives input from the limbic system.
Autonomic or Visceral Reflexes

• Autonomic reflexes occur over autonomic reflex arcs. Components of that reflex arc:
 • sensory receptor
 • sensory neuron
 • integrating center
 • pre & postganglionic motor neurons
 • visceral effectors

• Unconscious sensations and responses
 • changes in blood pressure, digestive functions etc
 • filling & emptying of bladder or defecation
Control of Autonomic NS

• Not aware of autonomic responses because control center is in lower regions of the brain

• Hypothalamus is major control center
 • input: emotions and visceral sensory information
 • smell, taste, temperature, osmolarity of blood, etc
 • output: to nuclei in brainstem and spinal cord
 • posterior & lateral portions control sympathetic NS
 • increase heart rate, inhibition GI tract, increase temperature
 • anterior & medial portions control parasympathetic NS
 • decrease in heart rate, lower blood pressure, increased GI tract secretion and mobility
Autonomic Dysreflexia

• Exaggerated response of sympathetic NS in cases of spinal cord injury above T6
• Certain sensory impulses trigger mass stimulation of sympathetic nerves below the injury

• Result
 • vasoconstriction which elevates blood pressure
 • parasympathetic NS tries to compensate by slowing heart rate & dilating blood vessels above the injury
 • pounding headaches, sweating warm skin above the injury and cool dry skin below
 • can cause seizures, strokes & heart attacks
AUTONOMIC DYSREFLEXIA...
(Spinal Cord Injury At T-6 Or Higher)

Triggered by sustained stimuli at T-6 or below from:

- Restrictive Clothing
- Pressure Areas
- Full Bladder or UTI
- Fecal Impaction

* ↑BP - Severe & Rapid
* Flushed Face
* Headache
* Distended Neck Veins
* ↑Heart Rate
* ↑Sweating

Vasodilation Above
--- Level of Injury ---

Vasoconstriction Below Level of Injury

* Pale
* Cool
* No Sweating

©2007 Nursing Education Consultants, Inc.
Example of Spinal and Supraspinal Control of AN: Urinary Bladder Function

• Urinary bladder function
 • Storage phase
 • Example of spinal reflex control on the AN
 • Voiding phase
 • Example of supraspinal control on the AN
Effect of SCI on the Urinary Bladder Function

- Spinal cord injury (SCI) eliminates the supraspinal control
 - Urinary bladder dysfunction

![Diagram of bladder function and effects of SCI](image)
Visceral Pain

- Vague and poorly localized
- Referral pain depend on the spinal segment receiving the afferent
Referred pain overview

<table>
<thead>
<tr>
<th>Organ</th>
<th>Afferent pathway</th>
<th>Spinal cord level</th>
<th>Referral area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>Thoracic splanchnic nerves</td>
<td>T1 to T4</td>
<td>Upper thorax and medial arm</td>
</tr>
<tr>
<td>Foregut (organs supplied by celiac trunk)</td>
<td>Greater splanchnic nerve</td>
<td>T5 to T9 (or T10)</td>
<td>Lower thorax and epigastric region</td>
</tr>
<tr>
<td>Midgut (organs supplied by superior mesenteric artery)</td>
<td>Lesser splanchnic nerve</td>
<td>T9,T10 (or T10,T11)</td>
<td>Umbilical region</td>
</tr>
<tr>
<td>Kidneys and upper ureter</td>
<td>Least splanchnic nerve</td>
<td>T12</td>
<td>Flanks (lateral regions) and pubic region</td>
</tr>
<tr>
<td>Hindgut (organs supplied by inferior mesenteric artery)</td>
<td>Lumbar splanchnic nerves</td>
<td>L1,L2</td>
<td>Left and right flanks and groins, lateral and anterior thighs</td>
</tr>
</tbody>
</table>