MACROCYTIC ANEMIA

(MCV >100 in child older than 2 years)

- Non-Megaloblastic
- Megaloblastic
Red cells are usually approximately the size of a small lymphocyte nucleus (arrow). In this case the red cells are slightly larger than the lymphocyte nucleus on average. Macrocytic anemia is most often a result of folate or vitamin B12 deficiency.
FOLIC ACID DEFICIENCY

• Etiology
 - Nutritional
 • Sources: leaves, vegetable, fruits, animal organs e.g. liver and kidneys
 • Body stores for folic acid is limited 2-3 months on folate free diet
 - Inadequate intake - during pregnancy, growth in children, and hemolytic anemia
 - Goat milk consumption
 • Decreased folic acid absorption - removal of ileum or IBD
 • Anticonvulsant medication e.g. phenytoin, primidone
 • Congenital dihydrofolate reductase deficiency
 • Drug induced abnormal metabolism - Methotrexate
FOLIC ACID DEFICIENCY

• Clinical presentation
 – Megaloblastic anemia
 – Glossitis
 – Irritability
 – Inadequate weight gain
 – Chronic diarrhea
 – Hemorrhage from thrombocytopenia in severe cases
FOLIC ACID DEFICIENCY

- Laboratory
 - Macrocytic anemia (MCV >100)
 - Megaloblastic changes including hypersegmented neutrophils (>5 lobes)
 - Elevated LDH
 - Low serum folate
 - High serum homocysteine
 - Hypercellular bone marrow

Peripheral smear for a patient with megaloblastic anemia
FOLIC ACID DEFICIENCY

- Treatment
 - Rule out B12 deficiency before starting folic acid therapy
 - Folic acid 0.5-1mg/day IV or oral
 - Hematologic response can occur within 72 hr (diagnostic test as well)
 - Treatment continued for only 3-4 weeks
 - Maintenance dose is 0.2mg daily

Warning:
- Treating Vit B12 deficiency with folic acid will correct the macrocytosis
 But
- The neurological symptoms will keep getting worse
VITAMIN B12 DEFICIENCY

• Know that
 – Vitamin B12 stores last for 3-5 years
 – Sources – animal products

• Etiology
 – Inadequate B12 intake (strict vegan)
 – Exclusively breast fed and maternal vegan diet
 – Removal of terminal ileum
 – Inflammatory bowel disease
 – Fish tapeworm (Diphyllobothrium latum)
 – Absence of Vitamin B12 transport protein and stomach intrinsic factor (IF)
VITAMIN B12 DEFICIENCY

Clinical Presentation
- Weakness
- Fatigue
- Failure to thrive
- Irritability
- Pallor
- Glossitis
- Vomiting
- Diarrhea
- Icterus

Neurologic symptoms
- Subacute combined degeneration of spinal cord
- Impaired vibration sense
- Ataxia
- Paresthesias
- Developmental regression
- Neuropsychiatric changes

Methylmalonic Acid → B12 → Succinyl-CoA
VITAMIN B12 DEFICIENCY

- **Laboratory**
 - Macrocytic anemia (MCV > 100)
 - Megaloblastic changes including hypersegmented neutrophils (>5 lobes)
 - Elevated LDH
 - Normal iron and folic acid levels
 - Increased methylmalonic acid in urine
 - Increased homocysteine
 - Low reticulocyte count for degree of anemia
 - Anti-parietal cell antibody positive in pernicious anemia
 - Less than 10% of cases present under age 40

Classic Schilling test no longer is regarded as the diagnostic test.
VITAMIN B12 DEFICIENCY

- **Treatment**
 - Parenteral administration of Vitamin B12 1mg daily
 - With neurologic involvement continue for minimum of 2 weeks
 - Maintenance of monthly IM Vitamin B12 for life
 - Diagnosis and treatment of tapeworm infestation, celiac disease, Crohn diseases
Macrocytic anemia (MCV > 100)

Megaloblastic anemia

- Test folate and vitamin B12 levels

 - Low Vit B12
 - Vit. B12: Treat and retest; consider treating for pernicious anemia or ileal disease
 - Folate: treat and retest; provide dietary counseling

 - Low Folate

 - Both levels are low

Non-megaloblastic anemia

- Reticulocyte count

 - Low
 - Refer to pediatric hematologist

 - High
 - Hemolysis or hemorrhage

Hypothyroidism

- Hepatic disease

- Tx of the cause
DIAMOND-BLACKFAN ANEMIA
(Congenital Hypoplastic Anemia)

- **Cause**
 - Primary defect in the erythroid progenitors

- **Clinical Presentation**
 - Profound anemia manifested by 2-6mo of age
 - More than 50% have congenital anomalies
 - Short stature
 - Craniofacial dysmorphism (snub nose, wide-set eyes, thick upper lip)
 - *Triphalangeal thumbs*
 - Bifid, sublaxed, absent, or supernumerary thumbs
DIAMOND-BLACKFAN ANEMIA
(Congenital Hypoplastic Anemia)

- Laboratory
 - Macrocytic RBCs with no hypersegmentation of neutrophils
 - Normal B12 and folate
 - Increased adenosine deaminase activity in most patients
 - Decreased RBCs precursor in bone marrow
 - Elevated serum iron
 - Normal bone marrow chromosomal studies
 - Normal to low reticulocytic count
 - Negative PCR for Parvovirus B19
DIAMOND-BLACKFAN ANEMIA
(Congenital Hypoplastic Anemia)

• **Treatment**
 - Steroids
 - Iron chelating agents (if transfusion dependent)
 - Stem cell transfusion for who do not respond to corticosteroids, after several years of RBC transfusions

• **Prognosis**
 - Median survival >40 years
NORMOCYTIC ANEMIA
(MCV > 70 + age and < 100 in child older than 2)
TRANSENT ERYTHROBLASTOPENIA OF CHILDHOOD

• **Background**
 - Most common acquired red cell aplasia in childhood
 - More common than Diamond-Blackfan Anemia
 (congenital hypoplastic anemia)

• **Etiology**
 - Transient suppression of RBC production
 - Often noted after a viral infection
 - No evidence of Parvovirus B19
TRANSIENT ERYTHROBLASTOPENIA OF CHILDHOOD

• Age - 3 months to 3 years of age, most >12 months

• More common in males

 – Most common presentation (despite the severity)
 • No symptoms
 • Gradual increasing pallor

 – Uncommon presentation
 • Increased fatigue or decreased energy
 • Breath-holding spells
TRANSIENT ERYTHROBLASTOPENIA OF CHILDHOOD

• Laboratory
 - MCV normal for age
 - Hemoglobin can be as low as 2.2 g/dL
 - Reticulocytes decreased
 - Bone marrow biopsy rarely needed but erythroid suppression seen
 - Normal adenosine deaminase (ADA)

• Treatment
 - Reassurance
 - Recover within 2-3 months
 - Occasionally transfusion is necessary
Reticulocyte Count

- Normal retic count full-term infants (3-7)
- Normal retic count in pre-term infants (5-10)
- In infants and children > 6 months (0.5-1)
- CRC = % Retic x patient HCT/Normal HCT
- CRC > 1.5 → suggest hemolysis or blood loss

Anemia

False high Retic count %

Retic count 4%
HCT=25%
\[
CRC = 4 \times \frac{25}{45} = 2.2\%
\]
Hemolytic Anemia

- **Intravascular hemolysis** → hemolysis within the blood vessels → (hemoglobin + haptoglobin) → decrease haptoglobin → hemoglobinemia → hemoglobinurea

- **Extravascular hemolysis** → hemolysis by macrophages in spleen, liver and lymph nodes → splenomegaly
HEREDITARY SPHEROCYTOSIS

Autosomal dominant inheritance

Biconcave RBCs

Spectrin deficiency
Spectrin and ankyrin deficiency
Band 3 deficiency
Protein 4.2 defects

Spherical RBCs

Splenomegaly
HEREDITARY SPHEROCYTOSIS

- Clinical Presentation
 - May be asymptomatic into adulthood
 - Anemia
 - Pallor
 - Jaundice
 - Pigment gallstones may form as early as 4-5 years of age
 - Fatigue
 - Exercise intolerance
 - Splenomegaly

Parvovirus B19 infections → Aplastic crisis:
 - Profound anemia
 - HCT<10%
 - High cardiac output failure
 - Hypoxia
 - Cardiovascular collapse and death
HEREDITARY SPHEROCYTOSIS

- Laboratory
 - Reticulocytosis
 - Indirect hyperbilirubinemia
 - High LDH
 - Low haptoglobin
 - Normal MCV
 - Elevated MCHC
 - High percentage of spherocytes on smear
 - Can be confirmed with osmotic fragility test
Red cells should be similar in size to the small lymphocyte nucleus (center). In **hereditary spherocytosis** the red cells are small and hyperchromatic, lacking central pallor (40x). Red arrows point out a few of the examples in this field.
HEREDITARY SPHEROCYTOSIS

- Treatment
 - Folic acid 1 mg PO daily to prevent deficiency and the resultant decrease in erythropoiesis
 - Splenectomy indications:
 - Hgb <10g/dl
 - Reticulocytosis
 - Aplastic crisis
 - Poor growth
 - Cardiomegaly
 - Some do not recommend splenectomy in patients with hemoglobin >10g/dl and reticulocytes <10%
HEREDITARY SPHEROCYTOSIS

• **Treatment**

 – Vaccination for encapsulated organism hemophilus influenza, meningococcus, pneumococcus should be given before splenectomy, then prophylactic penicillin V 125mg BID <5 years and 250mg BID for >5 years

 – Partial splenectomy is useful in children <5 years