PYRUVATE KINASE DEFICIENCY

- **Background**
 - Active enzyme in Embden-Meyerhof pathway
 - Deficiency leads to defective red cell glycolysis and decrease ATP production
 - Red cells are rigid and deformed, metabolically and physically vulnerable with decreased red cell survival
GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY

Oxidative radicles
H₂O₂

₂H₂O + O₂

GSH
(Reduced Glutathione)

GSSG
(Oxidized Glutathione)

G6PD
NADP

NADPH
GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY

• Pathophysiology
 - Reduced half-life of G6PD in red blood cells.
 • Mildly reduced → may not have hemolysis
 • Markedly reduced → chronic hemolysis

• Genetics
 - X-linked recessive
 - More common in African American and Mediterranean ancestry
GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY

• Episodes of hemolysis produced by:
 – Drugs
 • Antioxidant drugs include:
 – Aspirin
 – Sulfonamides
 – Antimalarials
 – Usually 24-48 hours after exposure
 – Fava beans
 – Infections
 – Neonatal jaundice
GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY

- Normocytic anemia
- Heinz bodies seen in unstained red blood cells due to hemoglobin precipitation
- Bite cells
- Diagnosis demonstrated by reduced G6PD activity in RBCs should be few weeks after the hemolytic episode
GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY

- Treatment
 - Avoidance of agents
 - Transfusion as needed
 - Folic acid supplementation
 - Splenectomy
 - Severe chronic anemia
 - Hypersplenism
 - Splenomegaly
Female G6PD

- G6PD deficiency is X-linked and therefore predominantly affects males.
- **Females** who are heterozygotes are usually clinically normal as they have about half the normal G6PD activity.
- Females may be affected either if they are *homozygous* or, more commonly, when by chance more of the normal than the abnormal X chromosomes have been inactivated (extreme Lyonisation – the Lyon hypothesis is that, in every XX cell, one of the X chromosomes is inactivated and that this is random).
- 45xo
AUTOIMMUNE HEMOLYTIC ANEMIA

- Etiology
 - Antibodies against antigens on RBCs surface
 - IgG against Rh complex is the most common in children
 - IgM cold antibodies usually associated with infections e.g. *Mycoplasma*, and *EBV*

- Clinical presentation
 - Pallor
 - Jaundice
 - Pyrexia
 - Hemoglobinuria
 - Splenomegaly
Direct Antibody Test or Coombs test

Looking for antibodies attached to red cell surface
Indirect Antibody Testing

Recipient’s antibodies from serum and donor’s blood sample: cross match and antibody screen
AUTOIMMUNE HEMOLYTIC ANEMIA

- Profound anemia
- Reticulocytosis
- Jaundice (unconjugated)
- Positive Direct antiglobulin (Coombs) test
- High MCHC, and spherocytosis
- High cold agglutinin (IgM) titer (in cases of mycoplasma or EBV)
AUTOIMMUNE HEMOLYTIC ANEMIA

• Treatment
 – Supportive treatment for mild cases
 – Corticosteroids for IgG mediated disease
 – Blood transfusion (blood unit with the least reaction by Coomb’s technique)
 – IVIg
 – Splenectomy in persistent cases
FANCONI ANEMIA

• Genetics
 – Autosomal Recessive, mutation in FANCA and FANCC genes

• Clinical Presentation
 – Skin abnormalities in 65% of cases
 • Hyperpigmentation of the trunk and intertriginous areas, café-au-lait spots, vitilgo
 – Short stature - 60%
 – Upper limb anomalies – 50%
 • Absent thumb
 • Triphalangeal thumb
 • Congenital hip dysplasia
 – Anemia (macrocytic)
 – café-au-lait spots
 – Short stature
 – Triphalangeal thumbs or absent thumb
 – Intellectual disability
FANCONI ANEMIA

• Clinical Presentation

 – Genital anomalies
 – Facial anomalies
 • Microcephaly, small eyes, epicanthal folds, abnormal shape ears, or absent ears
 – Intellectual disability—10%
 – Kidney abnormalities
 • Horseshoe kidney, absent or duplicate kidney
FANCONI ANEMIA

- **Laboratory**
 - Macrocytic anemia
 - Variable progression to full blown pancytopenia due to aplasia
 - Diepoxybutane (DEB) DNA analysis

- **Complications**
 - Acute leukemia
 - Carcinoma of head and neck, and upper esophagus
<table>
<thead>
<tr>
<th>Shape</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypersegmented PMNs (6 or more lobes)</td>
<td>Megaloblastic anemia</td>
</tr>
<tr>
<td>Howell-Jolly bodies “Residual nuclear remnants”</td>
<td>Functional asplenia</td>
</tr>
<tr>
<td>Heinz bodies</td>
<td>G6PD</td>
</tr>
<tr>
<td>Schistocytes Shearing of the cell</td>
<td>Micronangiopathy, DIC, TTP, HUS</td>
</tr>
<tr>
<td>Spherocytes “Loss of membrane”</td>
<td>Spherocytosis, AIHA, enzymopathy, and hemoglobinopathy</td>
</tr>
<tr>
<td>Target cells “Excess membrane”</td>
<td>Thalassemia, liver disease</td>
</tr>
</tbody>
</table>