BLEEDING DISORDERS
Platelet Disorders
Petechiae, HSP
Kasabach- Merritt, TAR
Thrombocytopenia absent radius syndrome (TARS)

- Rare autosomal recessive disease
- Clinical presentation
 - Thrombocytopenia
 - Absent radius
 - Congenital heart disease – TOF, ASD, VSD
 - Other
 - Eosinophilia
 - Milk protein allergy
 - Leukemoid reaction
 - Intellectual disability

Outcome:
Platelet number improve in the first year. Transfusion support for bleeding.
- Platelet destruction
 - Immune
 - ITP
 - Drugs
 - Non-Immune
 - TTP
 - HUS
 - DIC
 - Infection
 - Cardiac
Acute ITP

- Usually acute onset; immune mediated; post viral
- Peak 2-5 years of age,
- PE –no lymphadenopathy (LN), hepatosplenomegaly.
- CBC- other cell lines normal, large plts on smear
- Treat if plt< 10,000 or wet ITP,
- Treat- IVIG best response, 48-72 hours; blocks Fc receptors, SE
 - Anti-D (WInRho)- Rh+, hemolysis, quick response
 - Steroids good response, block phagocytosis, reduces antibodies, SE, inexpensive, need BM
- BM- Increased megakaryocytes, otherwise normal
- Chronic- If >6 months, F>M, older, unpredictable prognosis
Allo-Immune Thrombocytopenia

- Allo or Iso-Immune: Normal platelet count in mother
- Similar to Rh disease; PL A1 antigen/ Zw-a negative mother.
- 97% of population is PL A1 positive
- Sensitization early in pregnancy
- Plt function defect because Anti-PL-A1 interferes w/aggregation.
- Severe bleeding more likely; first born affected
- Recovery in 2-3 weeks
- Mother’s washed (PLA1 neg) platelets; IVIG; Ultrasound; Steroids
Hemolytic uremic syndrome

• Background
 – Non-immune
 – Microangiopathic hemolytic anemia
 – *E. coli* O157:H7 is a very common cause
 – *Shigella dysenteriae* type I is another cause

• Clinical presentation
 – Usually children between 4 months and 2 years
 – Infection with gastrointestinal symptoms—vomiting and often bloody diarrhea
 – Development of oliguria, hypertension, renal failure
BERNARD-SOULIER SYNDROME

- Autosomal recessive
- Severe platelet dysfunction
- Thrombocytopenia
- Giant platelets
- Markedly prolonged bleeding time
GLANZMANN THRBOATHENIA

- Autosomal recessive
- Abnormal function of GPIIb/IIIa complex (fibrin receptor)
- Severe platelet dysfunction → prolonged bleeding time
- Normal platelet count
- Aggregation studies show abnormal or absent aggregation
- Treatment
 - Platelet transfusion

Hermansky-Pudlak Syndrome
- Common in Puerto-Rican
- Oculocutaneous albinism
- Moderately severe bleeding
Kasabach-Merrit Syndrome

- Vascular tumor
 - Thrombocytopenia
 - Hemolytic anemia
 - Coagulopathy
- Do not regress spontaneously
- Very aggressive
- Can be fatal
COAGULATION DISORDERS
Normal

- Factor VIII/vWF complex
- vWF
- VIII:C
- Gene for VIII:C
- Gene for vWF
- vWF carrier protein protects VIII:C from degradation. It is released by activated thrombin.

Haemophilia A

- Gene defect
- Defective synthesis of VIII:C

von Willebrand disease

- Gene defect
- Rapid degradation of VIII:C in the absence of vWF.
HEMOPHILIA

- X-linked recessive
 - Factor VIII (Hemophilia A) – 85%
 - Factor IX (Hemophilia B) – 10-15%
- Bleeding may start from birth
- Classifications
 - Severe hemophilia <1%
 - Moderate hemophilia 1-5%
 - Mild hemophilia >5%
- Clinical Presentation
 - Easy bruising
 - Intramuscular (deep) hematomas – localized pain and swelling

X-linked recessive
- Primarily boys
- Girls are typically asymptomatic carriers

Normal values for FVIII assays are 50-150%
HEMOPHILIA

• Clinical Presentation
 - Hemarthroses
 • Hallmark of hemophilia
 • Ankle most common
 • Knee and elbow increasing frequency with age

• Laboratory
 - PTT is usually 2-3 times upper limit of normal
 - PT, bleeding time, platelet count normal
 - Specific assay for factor VIII or IX will confirm the diagnosis
<table>
<thead>
<tr>
<th>Factor VIII:C</th>
<th>Severity</th>
<th>Bleeding tendency</th>
</tr>
</thead>
<tbody>
<tr>
<td><1%</td>
<td>Severe</td>
<td>Spontaneous joint/muscle bleeds</td>
</tr>
<tr>
<td>1–5%</td>
<td>Moderate</td>
<td>Bleed after minor trauma</td>
</tr>
<tr>
<td>>5–40%</td>
<td>Mild</td>
<td>Bleed after surgery</td>
</tr>
</tbody>
</table>
HEMOPHILIA

• Treatment
 – Factor replacement
 • Mild to moderate bleeding – raise factor to 35%-50%
 • Severe or life threatening hemorrhage – raise level to 100%
 – Lifelong prophylaxis usually started with first joint hemorrhage
 – DDAVP may be sufficient in mild forms of hemophilia
 – Avoidance of high risk behavior

• Complications
 – Severe hemorrhage
 – Arthropathy
Figure 22.16 Severe arthropathy from recurrent joint bleeds in haemophilia. The aim of modern management is to prevent this from occurring.
Management
Recombinant FVIII concentrate for haemophilia A
recombinant FIX concentrate for haemophilia B.
given by prompt intravenous infusion whenever there
is any bleeding.
Raise to 30%
minor bleeds and simple joint bleeds.
Raise to 100%
Major surgery or life-threatening bleeds then
maintained at 30–50% for up to 2 weeks to prevent secondary haemorrhage.
regular infusion
usually 8–12-hourly for FVIII,
12–24-hourly for FIX, or by continuous infusion) and by
closely monitoring plasma levels.
Avoid
Intramuscular injections,
aspirin and non-steroidal anti-inflammatory drugs
should be avoided in all patients with haemophilia.
Prophylactic FVIII is given to all children with severe haemophilia A to further reduce the risk of chronic joint damage by raising the baseline level above 2%.

Primary prophylaxis usually begins at age 2–3 years.
given two to three times per week.
Desmopressin (DDAVP) may allow mild haemophilia A to be managed without the use of blood products. It is given by infusion and stimulates endogenous release of FVIII:C and von Willebrand factor (vWF). Adequate levels can be achieved to enable minor surgery and dental extraction to be undertaken. DDAVP is ineffective in haemophilia B.
Box 22.5 Complications of treatment of haemophilia

Inhibitors, i.e. antibodies to FVIII or FIX
- Develop in 5–20%
- Reduce or completely inhibit the effect of treatment
- Require the use of very high doses of factor VIII or bypassing agents (e.g. FVIIa) for treating bleeding
- May be amenable to immune tolerance induction

Transfusion-transmitted infections
- Hepatitis A, B and C
- HIV
- ?Prions

Vascular access
- Peripheral veins – may be difficult to cannulate
- Central venous access devices may become infected or thrombosed.
von Willebrand disease

- Family of bleeding disorders caused by an abnormality of the von Willebrand factor (vWF), carrier protein for Factor VIII
 - can range from almost undetectable to severe bleeding propensity
- vWF binds on platelets to its specific receptor *glycoprotein Ib* and acts as an adhesive bridge between the platelets and damaged subendothelium at the site of vascular injury
 - i.e. causes platelets to stick
- vWF also protects FVIII from degradation
von Willebrand disease

- Type 1 (70-80% of vWFD) is quantitatively less of qualitatively normal vWF
 - autosomal dominant, variable penetrance
 - generally mild, can be asymptomatic and vary with time

- Type 2A and 2B (~15%) have qualitatively abnormal vWF
 - autosomal dominant
 - moderate severity

- Type 3 most severe, low vWF and Factor VIIIc in plasma, vWF absent on platelets
 - autosomal recessive, consanguinity an issue
 - possible mild disease in heterozygotes
von Willebrand disease

- **History**–
 - often mild bleeding (e.g. bruising, epistaxis, primary menorrhagia)

- **Lab**–
 - CBC us. normal, prolonged bleeding time, PT normal, aPTT variably increased
 - vWF and Factor VIII variably decreased

- **Treatment**–
 - often, none needed
 - DDAVP increases vWF and Factor VIII
 - Factor VIII plasma concentrates for severe
VON WILLEBRAND DISEASE (vWD)

- Keywords
 - Recurrent, prolonged mucocutaneous bleeding
 - Family history of mucocutaneous bleeding

- Study of choice
 - vWF assay activity or vWD Panel

(vWF) Carrier protein for factor VIII

Von Willebrand factor (vWF)

Promote platelet adhesions and aggregation
VON WILLBRAND DISEASE

Treatment

- Based on subtype and trial of DDAVP
 - Type 1 usually treated with DDAVP (most common type)
 - DDAVP 0.3 microgram/kg increases the level of vWF and factor VIII 3-5 fold
 - Type 2B and 3 primarily treated with FVIII: vWF concentrates
 - Platelet type treated with platelet transfusions
Thrombophilia

- Clinical presentation
 - A child present with a clot

- Causes
 - Inherited
 - Protein C deficiency
 - Protein S deficiency
 - Anti-thrombin deficiency
 - Factor Leiden mutation
 - Acquired
 - Cancer
 - Antiphospholipid antibodies
 - Central venous catheter