Gross Morphology of Spinal Cord
Lecture Objectives

• Describe the gross anatomical features of the spinal cord.
• Describe the level of the different spinal segments compared to the level of their respective vertebrae.
• Identify important gross features of spinal cord, nerve roots, and spinal ganglia.
• Describe the internal features of spinal cord (gray matter and white matter) in the different regions.
• Summarize the location, origin, course and termination of the important ascending and descending tracts of spinal cord.
The Spinal Cord

• Together with brain forms the CNS
• Functions
 • spinal cord reflexes
 • integration (summation of inhibitory and excitatory) nerve impulses
 • highway for upward and downward travel of sensory and motor information
Spinal Cord

- Flattened cylinder
- 16-18 Inches long & 3/4 inch diameter
- In adult ends at L2
- In newborn ends at L4
- Growth of cord stops at age 5
- Cervical enlargement (C4-T1)
 - upper limbs
- Lumbar enlargement (L2-S3)
 - lower limbs
Inferior End of Spinal Cord

- Conus medullaris
 - cone-shaped end of spinal cord
- Filum terminale
 - thread-like extension of pia mater
 - stabilizes spinal cord in canal
- Caudae equinae (horse’s tail)
 - dorsal & ventral roots of lowest spinal nerves
- Spinal segment
 - area of cord from which each pair of spinal nerves arises
Spinal Nerves

• 31 Pairs of spinal nerves
• Named & numbered by the cord level of their origin
 • 8 pairs of cervical nerves (C1 to C8)
 • 12 pairs of thoracic nerves (T1 to T12)
 • 5 pairs of lumbar nerves (L1 to L5)
 • 5 pairs of sacral nerves (S1 to S5)
 • 1 pair of coccygeal nerves
• Exit through the IVF
Spinal Cord & Spinal Nerves

- Spinal nerves begin as roots
- Dorsal or posterior root is incoming sensory fibers
 - dorsal root ganglion (swelling) = cell bodies of sensory nerves
- Ventral or anterior root is outgoing motor fibers
Structures Covering the Spinal Cord

- Vertebrae
- Epidural space filled with fat
- Dura mater
 - Dense irregular CT tube
 - Ends at the lower border of S2
 - Follows the nerve roots and become continuous with epineurium
- Subdural space filled with interstitial fluid
- Arachnoid = spider web of collagen fibers
 - Ends at the lower border of S2
 - Follows the nerve roots into the IVF
- Subarachnoid space = CSF
 - Lumbar cistern (enlargement in subarachnoid space)
 - L2-S2
- Pia mater
 - Thin layer covers BV
 - Denticulate ligaments hold SC in place
Cervical Vertebral Canal: Content

- **Meninges**
 - Dura matter
 - Continuous with cranial dura matter (meningeal layer)
 - Arachnoid matter
 - Pia matter

- **Lower part of medulla oblongata**

- **Cervical segments of the spinal cord**
 - Contain the upper motor neurons for the upper and lower limbs
 - Other descending fibers to the spinal cord (e.g. reticulospinal fibers)
 - Contain the ascending (sensory) fibers from the neck below
 - Cervical enlargement
 - Innervation for the upper limb
 - Lower motor neurons

- **Cervical spinal nerves**
 - C1-C8
 - C1-C7 exit above the corresponding vertebra
 - C1 exit between the atlas and the occipital bone
 - C8 exit between the C7 and T1 vertebrae
 - C1-C4 form the cervical plexus
 - C5-T1 form the brachial plexus
Caudal Epidural Anesthesia

- Caudal epidural anesthesia during delivery
- Into sacral hiatus
- Sacral and coccygeal cornua are important landmarks
- Anesthetize S2-Co1 spinal nerves
Inferior End of vertebral canal: Content

- **Conus medullaris**
 - In adult ends at L2
 - In newborn ends at L4

- **Cauda equina (horse’s tail)**
 - dorsal & ventral roots of lowest spinal nerves (L1-Co1)

- **Spinal meninges**
 - **Dura matter**
 - Ends at S2-S3
 - **Arachnoid matter**
 - Ends at S2-S3
 - **Subarachnoid space = CSF**
 - **Lumbar cistern (enlargement in subarachnoid space)**
 - L2-S2
 - **Pia matter**
 - **Filum terminale**
 - thread-like extension of pia mater
 - stabilizes spinal cord in canal
Joints of Vertebral Bodies

- Cartilaginous joint- Symphysis
- Vertebral bodies covered with thin plates of hyaline cartilage
- IVD
- Ligaments
 - Anterior longitudinal ligaments
 - Wider & stronger
 - Attached to the vertebral bodies and the IVD
 - Posterior longitudinal ligaments
 - Weak and narrow
- Nerve supply: meningeal branches of the spinal nerves
Joints of Vertebral Arches

- Also called **zygapophysial joints**
- Plane synovial joint between the superior & inferior articular processes
 - Articular facets
 - Capsular ligament
- Ligaments
 - Supraspinous ligament
 - Between tips of spins
 - Intraspinal ligament
 - Between spines
 - Intertransverse ligaments
 - Between transverse processes
 - Ligamentum flavum
 - Between laminae
- Nerve supply: articular branches from posterior rami of the spinal nerves
Lumbar Puncture

- Lumbar puncture is used to withdraw CSF for diagnostic purposes
- LP performed from lumbar cistern to avoid the damage to the spinal cord
- LP approached mostly in L3-L4 or L4-L5

- Epidural anesthesia
 - Target the epidural space
 - Same approach as LP
 - Could be approached from the sacral hiatus
Spinal Nerves: Level of Exit

- From T1 to L5, spinal nerves exit from the IVF below their encountered vertebrae
- S1-S4 rami exit from their encountered sacral foramens
- S5 & Co1 exit from sacral hiatus
TABLE 4.13. NUMBERING OF SPINAL NERVES AND VERTEBRAE

<table>
<thead>
<tr>
<th>Segmental Level</th>
<th>Number of Nerves</th>
<th>Level of Exit from Vertebral Column</th>
</tr>
</thead>
</table>
| Cervical | 8 (C1–C8) | Nerve C1^a (suboccipital nerve) passes superior to arch of vertebra C1
| | | Nerves C2–C7 pass through IV foramina superior to the corresponding vertebrae
| | | Nerve C8 passes through the IV foramen between vertebra C7 and T1 |
| Thoracic | 12 (T1–T12) | Nerves T1–L5 pass through IV foramina inferior to the corresponding vertebrae |
| Lumbar | 5 (L1–L5) | |
| Sacral | 5 (S1–S5) | Nerves S1–S4 branch into anterior and posterior rami within the sacrum, with the respective rami passing through the anterior and posterior sacral foramina |
| Coccygeal^a | 1 (Co1) | The 5th sacral and coccygeal nerves pass through the sacral hiatus |

^aThe first cervical nerves lack posterior roots in 50% of people, and the coccygeal nerves may be absent.

(Modified from Barr’s The Human Nervous System.)
Gray Matter of the Spinal Cord

- Gray matter is shaped like the letter H or a butterfly
 - contains neuron cell bodies, unmyelinated axons & dendrites
 - dorsal gray horns (sensory neurons)
 - ventral gray horns (motor somatic neurons)
 - lateral horns (motor autonomic neurons) only present in thoracic spinal cord
 - gray commissure crosses the midline
- Central canal continuous with 4th ventricle of brain
Nerve Cell Columns in the Gray Matter

• Motor
 • Medial motor nucleus (cell column)
 • Axial muscles
 • Entire SC
 • Lateral motor nucleus
 • Limb muscles
 • Enlargements
 • Intermediolateral cell column
 • Autonomic
 • T1-L2, S2-4
Nerve Cell Columns in the Gray Matter

• Sensory
 • Substantia gelatinosa
 • Entire SC
 • Pain, temperature & touch
 • Nucleus proprius
 • Entire SC
 • Proprioception (sense of position & movement), two-point discrimination & vibration
 • Nucleus dorsalis (Clarke’s column)
 • C8-L2
 • Proprioceptive endings
Cell columns in the anterior gray horn of the spinal cord: somatotopic organization
• White matter covers gray matter
• Anterior median fissure deeper than Posterior median sulcus
• Anterior, Lateral and Posterior White Columns contain axons that form ascending & descending tracts
(Segment C1)

(Segment C8)

(Segment T2)

(Segment L4)

(Segment S3)
Tracts of the Spinal Cord

• Function of tracts
 • highway for sensory & motor information
 • sensory tracts ascend
 • motor tracts descend

• Naming of tracts
 • indicates position & direction of signal
 • example = anterior spinothalamic tract
 • impulses travel from spinal cord towards brain (thalamus)
 • found in anterior part of spinal cord
Location of Tracts inside Cord

- Motor/descending tracts
 - pyramidal tract (corticospinal)
 - extrapyramidal tracts
- Sensory/ascending tracts
 --- spinothalamic tract
 --- posterior column
 --- spinocerebellar ?
Functions of Spinal Tracts

Sensory
- Spinothalamic tract
 - pain, temperature, deep pressure & crude touch
- Posterior columns
 - proprioception, discriminative touch, two-point discrimination, pressure and vibration

Motor
- Direct pathways (corticospinal & corticobulbar)
 - precise, voluntary movements
- Indirect pathways (rubrospinal, vestibulospinal)
 - programming automatic movements, posture & muscle tone, equilibrium & coordination of visual reflexes
White Matter of the Spinal Cord

- Ventral white commissure
- Lissaur’s tract (dorsolateral fasciculus)
- Intersegmental fibers (fasciculus proprius)
Blood Supply to SC

- One anterior spinal a.
 - Vertebral aa.
- Two posterior spinal aa.
 - Vertebral aa. 25%
 - PICA 75%

- Anterior & posterior radicular aa.
 - Arise at every spinal level
 - Serve their respective roots & ganglia
Blood Supply to SC

- Anterior & posterior spinal medullary aa.
 - Arise at intermittent levels
 - Serve to augment the BS to SC
- Artery of Adamkiewicz
 - Unusually large spinal medullary a.
 - Usually on the left
 - In low thoracic or upper lumbar levels
Blood Supply to SC

- **Spinal cord Ischemia**
- **Anterior spinal a.**
 - Small & tenuous
 - Occlusion produces bilateral damage (below lesion)
- **Affects**
 - Corticospinal tracts
 - Paraplegia below lesion
 - Spinothalamic tracts
 - Thermoanesthesia and analgesia
 - Descending autonomic tracts
 - Loss of bladder & bowel control
 - Anterior gray horn
 - Near enlargement – weakness of limb muscles