DRUGS USED TO TREAT PEPTIC ULCER DISEASE
DRUGS USED TO TREAT PEPTIC ULCER DISEASE

- The two main causes of peptic ulcer disease are:
 - Infection with gram-negative *Helicobacter pylori*.
 - The use of nonsteroidal anti-inflammatory drugs (NSAIDs).
 - Increased hydrochloric acid (HCl) secretion.
 - Inadequate mucosal defense against gastric acid also play a role.

- Treatment approaches include:
 1) Eradicating the *H. pylori* infection.
 2) Reducing secretion of gastric acid with the use of PPIs or H2-receptor antagonists.
 3) Providing agents that protect the gastric mucosa from damage, such as *misoprostol* and *sucralfate*.
Summary of drugs used to treat peptic ulcer disease

Antimicrobial Agents
- Amoxicillin (AMOXIL, TRIMOX)
- Bismuth compounds (PEPTO-BISMOL, KAOPECTATE)
- Clarithromycin (BIAXIN)
- Metronidazole (FLAGYL)
- Tetracycline (SUMYCIN)

H₂ – Histamine Receptor Blockers
- Cimetidine (TAGAMET)
- Famotidine (PEPCID)
- Nizatidine (AXID)
- Ranitidine (ZANTAC)

Proton Pump Inhibitors (PPIs)
- Dexlansoprazole (DEXILANT)
- Esomeprazole (NEXIUM)
- Lansoprazole (PREVACID)
- Omeprazole (PRILosec)
- Pantoprazole (PROTONIX)
- Rabeprazole (ACIPHEX)

Antimuscarinic Agents
- Dicyclomine (BENTYL)

Prostaglandins
- Misoprostol (CYTOTEC)

Antacids
- Aluminum hydroxide (ALTERNAGEL)
- Calcium carbonate (TUMS)
- Magnesium hydroxide (MILK OF MAGNESIA)
- Sodium bicarbonate (NUMEROUS)

Mucosal Protective Agents
- Bismuth subsalicylate (PEPTO-BISMOL)
- Sucralfate (CARAFATE)
A. Antimicrobial agents

- Patients with peptic ulcer disease (duodenal or gastric ulcers) who are infected with *H. pylori* require antimicrobial treatment.
- Infection with *H. pylori* is diagnosed via:
 - Endoscopic biopsy of the gastric mucosa.
 - Various noninvasive methods; serology and urea breath tests.
- Eradication of *H. pylori* results in rapid healing of active ulcers and low recurrence rates (less than 15% compared with 60% to 100% per year for initial ulcers healed with acid-reducing therapy alone).
- Successful eradication of *H. pylori* (80% to 90%) is possible with various combinations of antimicrobial drugs.
Urea breath test for detecting presence of Helicobacter pylori

1. Subjects are given urea labeled with 13C orally.

2. H. pylori produces urease, which hydrolyzes the labelled urea to 13CO$_2$ and ammonia.

3. 13CO$_2$ is dissolved in the blood and transported to the lungs.

4. Exhaled 13CO$_2$ is analyzed. The presence of H. pylori results in an increase in the ratio of 13CO$_2$ to 12CO$_2$ in expired breath.
- **Triple Therapy** consisting of
 1. a PPI (proton pump inhibitors).
 2. Amoxicillin (*metronidazole* may be used in *penicillin-allergic* patients)
 3. Clarithromycin is the therapy of choice.

- **Quadruple therapy** of:
 1. Bismuth subsalicylate.
 2. Metronidazole.
 3. Tetracycline.
 4. A PPI (proton pump inhibitors).

- Quadruple therapy should be considered in areas with high resistance to clarithromycin.
- This usually results in a 90% or greater eradication rate.
Notes:

- Treatment with a *single* antimicrobial drug is much less effective, results in antimicrobial *resistance*, and is not recommended.
- Substitution of antibiotics is also *not recommended* (that is, do not substitute ampicillin for amoxicillin or doxycycline for tetracycline).
- **Gastroesophageal reflux disease** **GERD** (heartburn) is *not associated* with H. pylori infection and *does not respond to antibiotics.*
B. H2-receptor antagonists and regulation of gastric acid secretion

- Gastric acid secretion is stimulated by acetylcholine, histamine, and gastrin.
- The receptor-mediated binding of acetylcholine, histamine, or gastrin results in the activation of protein kinases, which in turn stimulates the H+/K+-adenosine triphosphatase (ATPase) proton pump to secrete hydrogen ions in exchange for K+ into the lumen of the stomach.
- By competitively blocking the binding of histamine to H2 receptors, these agents reduce the secretion of gastric acid.
- The four drugs used in the United States potently inhibit (greater than 90%) basal, food-stimulated, and nocturnal secretion of gastric acid.
 - Cimetidine [si-met-ih-deen].
 - Ranitidine [Ra-ni-ti-deen].
 - Famotidine [Fa-moe-tideen].
 - Nizatidine [nye-ZA-ti-deen].
Effects of acetylcholine, histamine, prostaglandin E2, and gastrin on gastric acid secretion by the parietal cells of stomach. Gs and Gi are membrane proteins that mediate the stimulatory or inhibitory effect of receptor coupling to adenylyl cyclase.
Cimetidine was the first histamine H2-receptor antagonist. However, its utility is limited by its adverse effect profile and drug interactions.

- **Actions:** The histamine H2-receptor antagonists act selectively on H2 receptors in the stomach, but they have no effect on H1 receptors.
- They are competitive antagonists of histamine and are fully reversible.

- **Therapeutic uses:** The use of these agents has decreased with the advent of PPIs.

a. **Peptic ulcers:** All four agents are equally effective in promoting the healing of duodenal and gastric ulcers. However, recurrence is common if *H. pylori* is present and the patient is treated with these agents alone.

- Patients with NSAID-induced ulcers should be treated with PPIs, because these agents heal and prevent future ulcers more effectively than H2 antagonists do.
b. Acute stress ulcers: These drugs are given as an intravenous infusion to prevent and manage acute stress ulcers associated with high-risk patients in intensive care units.

• Because tolerance may occur with these agents in this setting, PPIs have gained favor for this indication.

c. Gastroesophageal reflux disease (GERD): Low doses of H2 antagonists, currently available for over-the-counter sale, are effective for the treatment of heartburn (GERD) in only about 50% of patients.

• H2-receptor antagonists act by stopping acid secretion. Therefore, they may not relieve symptoms for at least 45 minutes.
• Antacids more quickly and efficiently neutralize stomach acid, but their action is only temporary.
• For these reasons, PPIs are now used preferentially in the treatment of GERD, especially for patients with severe heartburn.
Pharmacokinetics:

- After oral administration, the H2 antagonists distribute widely throughout the body (including into breast milk and across the placenta) and are excreted mainly in urine.
- Cimetidine, ranitidine, and famotidine are also available in intravenous formulations.
- The half-life of all of these agents may be increased in patients with renal dysfunction, and dosage adjustments are needed.

Adverse effects: In general, the H2 antagonists are well tolerated.

- Cimetidine can have endocrine effects because it acts as a nonsteroidal antiandrogen.
 - These effects include gynecomastia and galactorrhea (continuous release/discharge of milk).
 - The other agents do not produce the antiandrogenic and prolactin-stimulating effects of cimetidine.
- Other central nervous system effects (such as confusion and altered mentation) occur primarily in elderly patients and after intravenous administration.
- Cimetidine inhibits several cytochrome P450 isoenzymes and can interfere with the metabolism of many other drugs, such as warfarin, phenytoin, and clopidogrel.
- All H2 antagonists may reduce the efficacy of drugs that require an acidic environment for absorption, such as ketoconazole.
Drug interactions with cimetidine

Warfarin
Diazepam
Phenytoin
Quinidine
Carbamazepine
Theophylline
Imipramine

Serum concentration increases.

Cimetidine

Metabolites

P-450
PPIs: Inhibitors of the H+/K+-ATPase proton pump

- The PPIs bind to the **H+/K+-ATPase enzyme** system (proton pump) and suppress the secretion of **hydrogen ions** into the gastric lumen.

- The membrane-bound proton pump is the **final step** in the secretion of gastric acid.

- The available PPIs include:
 - **Dexlansoprazole** [dex-lan-so-pra-zole]
 - **Esomeprazole** [es-oh-MEH-pra-zole]
 - **Lansoprazole** [lan-SO-pra-zole]
 - **Omeprazole** [oh-MEH-pra-zole]
 - **Pantoprazole** [pan-TOE-pra-zole]
 - **Rabeprazole** [rah-BEH-pra-zole].
• **Omeprazole, esomeprazole, and lansoprazole** are available over-the-counter for short-term treatment of GERD.

 - **Actions:** These agents are **prodrugs** with an acid-resistant enteric coating to protect them from premature degradation by gastric acid. The coating is removed in the alkaline duodenum, and the prodrug, a weak base, is absorbed and transported to the parietal cell. There, it is converted to the active drug and forms a **stable covalent** bond with the H+/K+-ATPase enzyme.

• It takes about **18 hours** for the enzyme to be resynthesized, and acid secretion is inhibited during this time. At standard doses, PPIs inhibit both basal and stimulated gastric acid secretion by more than **90%**.

• An oral product containing omeprazole combined with **sodium bicarbonate** for faster absorption is also available over the counter and by prescription.

 - **Therapeutic uses:** The PPIs are superior to the H2 antagonists in **suppressing acid production and healing ulcers**. Thus, they are the preferred drugs for stress ulcer treatment and prophylaxis and for the treatment of GERD, erosive esophagitis, active duodenal ulcer, and pathologic hypersecretory conditions (for example, Zollinger- Ellison syndrome, in which a gastrin-producing tumor causes hypersecretion of HCl).
If a once-daily PPI is only partially effective for GERD symptoms, increasing dosing to twice daily or administering the PPI in the morning and adding an H2 antagonist in the evening may improve symptom control. If an H2-receptor antagonist is needed, it should be taken well after the PPI.

- H2 antagonists reduce the activity of the proton pump, and PPIs require active pumps to be effective.
- PPIs also reduce the risk of bleeding from ulcers caused by aspirin and other NSAIDs and may be used for prevention or treatment of NSAID-induced ulcers.
- They are used with antimicrobial regimens to eradicate *H. pylori*.

Pharmacokinetics: All of these agents are effective orally. For maximum effect, PPIs should be taken 30 to 60 minutes before breakfast or the largest meal of the day.

- Dexlansoprazole has a dual delayed release formulation and can be taken without regard to food.
- Esomeprazole, lansoprazole, and pantoprazole are also available in intravenous formulations.
- Although the plasma half-life of these agents is only a few hours, they have a long duration of action due to covalent bonding with the H+ /K+- ATPase enzyme.
- Metabolites of these agents are excreted in urine and feces.
Adverse effects: The PPIs are generally well tolerated.

- Omeprazole and esomeprazole may decrease the effectiveness of clopidogrel because they inhibit CYP2C19 and prevent the conversion of clopidogrel to its active metabolite.
- Although the effect on clinical outcomes is questionable, concomitant use of these PPIs with clopidogrel is not recommended because of a possible increased risk of cardiovascular events.
- PPIs may increase the risk of fractures, particularly if the duration of use is 1 year or greater.
- Prolonged acid suppression with PPIs (and H2 antagonists) may result in low vitamin B12 because acid is required for its absorption in a complex with intrinsic factor.
- Elevated gastric pH may also impair the absorption of calcium carbonate. Calcium citrate is an effective option for calcium supplementation in patients on acid suppressive therapy, since absorption of the citrate salt is not affected by gastric pH.
- Diarrhea and Clostridium difficile colitis may occur in community patients receiving PPIs.
- Patients must be counseled to discontinue PPI therapy and contact their physician if they have diarrhea for several days.
- Additional adverse effects may include hypomagnesemia and an increased incidence of pneumonia.
D. Prostaglandins

- Prostaglandin E, produced by the gastric mucosa, inhibits secretion of acid and stimulates secretion of mucus and bicarbonate (cytoprotective effect).
- A deficiency of prostaglandins is thought to be involved in the pathogenesis of peptic ulcers.
- **Misoprostol** [mye-soe-PROSTole], an analog of prostaglandin E1, is approved for the prevention of NSAID-induced gastric ulcers.
- Prophylactic use of misoprostol should be considered in patients who are taking NSAIDs and are at moderate to high risk of NSAID-induced ulcers, such as elderly patients and those with previous ulcers.
 - **Misoprostol** is contraindicated in pregnancy, since it can stimulate uterine contractions and cause miscarriage.
 - Dose-related diarrhea and nausea are the most common adverse effects and limit the use of this agent.
- PPIs are preferred agents for the prevention of NSAID-induced ulcers.
- Misoprostol reduces serious gastrointestinal (GI) complications in patients with rheumatoid arthritis receiving NSAIDs.
E. Antacids

- Antacids are **weak bases** that react with gastric acid to form water and a salt to diminish gastric acidity.
- Because pepsin (a proteolytic enzyme) is inactive at a pH greater than 4, antacids also reduce pepsin activity.

Chemistry: Antacid products vary widely in their chemical composition, acid-neutralizing capacity, sodium content, palatability, and price.

- The efficacy of an antacid depends on its capacity to neutralize gastric HCl and on whether the stomach is full or empty (food delays stomach emptying allowing more time for the antacid to react).
- Commonly used antacids are combinations of salts of aluminum and magnesium, such as **aluminum hydroxide** and **magnesium hydroxide** \([\text{Mg(OH)}_2]\). **Calcium carbonate** \([\text{CaCO}_3]\) reacts with HCl to form CO2 and CaCl2 and is also a commonly used preparation.

- Systemic absorption of **sodium bicarbonate** \([\text{NaHCO}_3]\) can produce transient metabolic alkalosis.
- Therefore, this antacid is not recommended for long-term use.
Therapeutic uses: Antacids are used for symptomatic relief of peptic ulcer disease and GERD, and they may also promote healing of duodenal ulcers. They should be administered after meals for maximum effectiveness. [Note: Calcium carbonate preparations are also used as calcium supplements for the treatment of osteoporosis.]

Adverse effects: Aluminum hydroxide tends to cause constipation, whereas magnesium hydroxide tends to produce diarrhea.

- Preparations that combine these agents aid in normalizing bowel function. Absorption of the cations from antacids (Mg2+, Al3+, Ca2+) is usually not a problem in patients with normal renal function.

- Accumulation and adverse effects may occur in patients with renal impairment.
F. Mucosal protective agents

- Also known as cytoprotective compounds, these agents have several actions that enhance mucosal protection mechanisms, thereby preventing mucosal injury, reducing inflammation, and healing existing ulcers.

- **Sucralfate**: This complex of aluminum hydroxide and sulfated sucrose binds to positively charged groups in proteins of both normal and necrotic mucosa.

 - By forming complex gels with epithelial cells, sucralfate [soo-KRAL-fate] creates a physical barrier that protects the ulcer from pepsin and acid, allowing the ulcer to heal.

 - Although sucralfate is effective for the treatment of duodenal ulcers and prevention of stress ulcers, its use is limited due to the need for multiple daily dosing and drug–drug interactions.

 - Because it requires an acidic pH for activation, sucralfate should not be administered with PPIs, H2 antagonists, or antacids.

 - Sucralfate is well tolerated, but it can interfere with the absorption of other drugs by binding to them.

 - This agent does not prevent NSAID-induced ulcers, and it does not heal gastric ulcers.

- **Bismuth subsalicylate**: This agent is used as a component of quadruple therapy to heal peptic ulcers. In addition to its antimicrobial actions, it inhibits the activity of pepsin, increases secretion of mucus, and interacts with glycoproteins in necrotic mucosal tissue to coat and protect the ulcer.