Histology of the Urinary System
Lecture Objectives

- Describe the normal microscopic appearance of the different parts of the kidney including cortex, medulla, juxtaglomerular apparatus and the distribution of the vasculature within the kidney.
- List the different parts of the nephron with the details of each part.
- Describe the microscopical appearance of the ureter, urinary bladder and urethra.
- Compare the histological appearance of the distended and contracted bladder.
Internal Anatomy of the Kidneys

• Parenchyma of kidney
 – Renal cortex = superficial layer of kidney
 – Renal medulla
 • inner portion consisting of 8-18 cone-shaped renal pyramids separated by renal columns
 • renal papilla point toward center of kidney
 – Medullary rays, parallel arrays of tubules penetrate the cortex from the base of the medullary pyramids

• Drainage system fills renal sinus cavity
 – minor & major calyces empty into the renal pelvis which empties into the ureter
 – minor calyces collect urine from the papillary ducts of the papilla
Nephrons

- A *nephron* consists of a renal corpuscle where fluid is filtered, and a renal tubule into which the filtered fluid passes.
- Renal corpuscle = site of plasma filtration
 - glomerulus is capillaries where filtration occurs
 - glomerular (Bowman’s) capsule is double-walled epithelial cup that collects filtrate
Nephrons

• A renal tubule consists of:
 – proximal convoluted tubule (PCT)
 – loop of Henle (nephron loop)
 – distal convoluted tubule (DCT)

• Distal convoluted tubules of several nephrons drain into a single collecting duct and many collecting ducts drain into a small number of papillary ducts.
Nephrons

- The loop of Henle consists of:
 - thick descending limb
 - thin descending limb
 - thin ascending limb
 - thick ascending limb
Nephrons: Types

- There are two types of nephrons that have differing structure and function
 - A cortical nephron
 - glomerulus in the outer portion of the cortex
 - short loop of Henle
 - penetrates only into the outer region of the medulla
 - A juxtamedullary nephron
 - glomerulus deep in the cortex close to the medulla
 - long loop of Henle stretches through the medulla and almost reaches the renal papilla
80-85% of nephrons are cortical nephrons
Renal corpuscles are in outer cortex and loops of Henle lie mainly in cortex
• 15-20% of nephrons are juxtamedullary nephrons
• Renal corpuscles close to medulla and long loops of Henle extend into deepest medulla enabling excretion of dilute or concentrated urine
Renal Corpuscle

- Renal Corpuscle is about 200 μm in diameter
- Consists of:
 - *Bowman’s capsule* surrounds capsular (urinary) space
 - podocytes cover capillaries to form visceral layer
 - simple squamous cells form parietal layer of capsule
 - *Glomerular capillaries* arise from afferent arteriole & form a ball before emptying into efferent arteriole
 - Fenestrated endothelial cells constitute the capillaries
- Renal corpuscle have a *vascular pole* where the afferent arteriole enters and the efferent arteriole leaves, and a *urinary pole* where proximal convoluted tubule begins
Glomerular Capsule

- The *glomerular capsule* consists of visceral and parietal layers.
- The *parietal layer* consists of simple squamous epithelium supported by basal lamina and thin layer of reticular fibers.
 - Near the urinary pole the epithelium becomes cuboidal or low columnar.
- The *visceral layer* consists of modified simple squamous epithelial cells called *podocytes*.
Glomerular Capsule

- Podocytes have cell body from which arise several primary processes
 - Each primary process gives rise to many secondary processes (pedicels)
 - Only the secondary processes have direct contact with the basal lamina
 - Filtration slits, is a 25 nm wide elongated spaces between the secondary processes
 - Filtration slits are covered by 6 nm thick diaphragm
- A thick basement membrane (0.1 µm) separates the capillaries endothelium and the podocytes
 - Lamina densa covered by lamina rara on each side
 - Basement membrane is selectively permeable for macromolecules
Glomerular Capillaries

- Glomerular capillaries have **mesangial cells** adhere to their walls.
- Mesangial cells are contractile cells and have receptors for angiotensin II, so it can reduce the glomerular flow.
- Mesangial cells contain also receptors for natriuretic factor produced by the cardiac atria cells causing vasodilation and relaxes mesangial cells.
- Mesangial cells also have several functions:
 - Support the glomerulus
 - Produce extracellular matrix
 - Immune response
 - Outside the glomerulus in the vascular pole, form the **extraglomerular mesangial cells**, which is part of the extraglomerular apparatus.
Proximal convoluted tubules

- Longer than the distal convoluted tubule, thus seen more near the renal corpuscle in the cortex
- Consists of **cuboidal cells**
- Acidophilic cytoplasm, numerous elongated mitochondria
- **Brush border**, abundant microvilli
- **Large cells**, 3-5 surround each tubule
- Lateral interdigitation connecting lateral walls of cells, difficult to distinguish boundaries between adjacent cells
- Basal infoldings with mitochondria (basal striations), characteristic of cells with active ionic transport
Proximal convoluted tubules

• Functions
 – Resorption of 80% water, electrolytes through Na⁺, K⁺-ATPase
 – Resorption of 100% glucose and amino acids
 – Protein resorption: apical canaliculi connecting microvilli increase the absorption of macromolecules by pinocytosis.
 • Vacuoles and lysosomes are more abundant in the apical portion of the cytoplasm
 – Secretion of creatinine and organic acids and bases, so pH modification
Loop of Henle

• **Thick descending limb** (60 μm)
 – Cytology
 • Similar to proximal convoluted tubules
 • Slightly fewer microvilli
 • Less basolateral interdigitation
 • Mitochondria are smaller and more randomly oriented
 – Function: Na\(^+\) and H2O reabsorption

• **Thin tubule** (12 μm)
 – Cytology: Simple squamous epithelium
 – Function
 • Descending limb: permeable to H2O and salt
 • Ascending limb: impermeable to H2O, permeable to salt and urea
 • Concentration of the urine
Loop of Henle

• Thick ascending limb
 – Cytology
 • Cuboidal cells with apical nuclei
 • Numerous basal infoldings with larger mitochondria
 • Few and short microvilli
 • Macula densa, part of juxtaglomerular apparatus
 – Function
 • Cl\(^-\) and Na\(^+\) transport into basolateral spaces
 • Establish a salt concentration gradient in medulla for urine concentration
Distal convoluted tubule

- **Cytology**
 - Same as thick ascending limb of loop of Henle
 - Cells are flatter and smaller than those of proximal convoluted tubules, so more cells will appear in cross section

- **Function**
 - Na\(^+\) reabsorption, Ka\(^+\) secretion (aldosterone)
 - Reabsorption of bicarbonate, hydrogen secretion, pH increases
 - Conversion of ammonia to ammonium ions
Collecting tubules and ducts

- **Types**
 - Connecting tubule: 40 µm in diameter, in cortex
 - Cortical duct: medullary rays
 - Medullary duct: medulla
 - Papillary duct (of Bellini): 200 µm in diameter, apex

- **Epithelium: cuboidal to columnar cells**
 - Principal cells: light stained cells, cilium, short microvilli, basal infoldings, permeable to H2O (H2O channel, in the presence of antidiuretic hormone)
 - Intercalated cells: dark stained cells, microplicae (folds), H⁺ secretion, bicarbonate reabsorption. Absent in inner medulla
Juxtaglomerular Apparatus

- Senses and regulates blood flow and composition
- Structure where afferent arteriole makes contact with ascending limb of loop of Henle
- Consists of three cell types
 - **juxtaglomerular cells**: modified muscle cells in arteriole, renin secretion
 - **macula densa**: sense NaCl concentration, regulates renin release. It is thickened part of ascending limb
 - **the extraglomerular mesangial cells**: unknown function
• Regulation of blood flow by renin
 Stimulation → JG cells → Renin →
 Angiotensinogen → Angiotensin I (lung) →
 Angiotensin II → Aldosterone (Adrenal
cortex) → Na⁺, Cl⁻ uptake (DCT)
Blood & Nerve Supply of Kidney

- Abundantly supplied with blood vessels
 - receive 25% of resting cardiac output via renal arteries
- Functions of different capillary beds
 - glomerular capillaries where filtration of blood occurs
 - vasoconstriction & vasodilation of afferent & efferent arterioles produce large changes in renal filtration
 - peritubular capillaries that carry away reabsorbed substances from filtrate
 - vasa recta supplies nutrients to medulla without disrupting its osmolarity form
- The nerve supply to the kidney is derived from the renal plexus (sympathetic division of ANS). Sympathetic vasomotor nerves regulate blood flow & renal resistance by altering arterioles
Urinary bladder & Urinary passages

• Bladder and urinary passages store and conduct urine to the exterior
• All have the same histological structure:
 • The mucosa
 – Transitional epithelium
 – Lamina propria
 • Dense woven sheath of smooth muscle
 – Calyces, renal pelvis and ureters: helical arrangement
 – Distal part of ureter: longitudinal
 – Bladder: run in every direction
 – Bladder neck:
 • Internal longitudinal. Distal to bladder neck become circular
 – Surround prostatic urethra
 – Extend to external urethral meatus in women
 • Middle circular: ends at the bladder neck
 • Outer longitudinal layer: continue to the prostate in men and to the external urethral meatus in women
 • Adventitia
 • Serosa: upper part of the bladder
A. Empty bladder
B. Full bladder
Urethra

- **Male urethra**: consists of four parts
 - Prostatic urethra
 - Close to bladder, and ducts of prostate gland opens into it
 - Transitional epithelium
 - Dorsal and distal part have verumontanum (elevation protrudes into its interior)
 - Closed tube (prostatic utricle) opens into the tip with no known function
 - Ejaculatory ducts open on the sides of the verumontanum
 - Membranous urethra
 - 1 cm, surrounded by the external urethra sphincter (striated muscle)
 - Stratified or pseudostratified columnar epithelium
 - Bulbous and pendulous parts of urethra
 - Located in the corpus spongiosum of the penis
 - Lumen dilates distally forming the fossa navicularis
 - Pseudostratified columnar with stratified squamous areas
 - Litter’s glands: mucous glands found along the entire urethra and mostly in the pendulous part
- **Female urethra**
 - 4-5 cm long tube, lined by stratified squamous epithelium and areas of pseudostratified columnar epithelium
 - The mid part is surrounded by external urethral sphincter