LOCAL AND HUMORAL CONTROLL OF BLOOD FLOW BY THE TISSUES

MECHANISM OF BLOOD FLOW • CONTROLL

I.ACUITE CONTROLL OF LOCAL BLOOD FLOW • FLOW

A.VASODILATOR THEORY •

B.OXYGEN LACK THEORY •
METABOLIC MECHANISM

A. REACTIVE HYPEREMIA •
B. ACTIVE HYPEREMIA •
AUTOREGULATION OF BLOOD FLOW DURING CHANGES IN ARTERIAL PRESSURE

1. METABOLIC MECHANISM
2. MYOGENIC MECHANISM
Figure 17-5. Effect of different levels of arterial pressure on blood flow through a muscle. The solid red curve shows the effect if the arterial pressure is raised over a period of a few minutes. The dashed green curve shows the effect if the arterial pressure is raised slowly over a period of many weeks.
Special mechanism for acute blood flow control in specific tissues

1. Kidney: tubuloglomerular feedback mechanism > macula densa located at the juxtaglomerular apparatus in the kidney.
2. Brain: Increase of CO2 and H ions.
NO

ROLE OF EDRF (NITRIC OXIDE) IN LOCAL CONTROLL OF BLOOD FLOW
LOCAL AND HUMORAL CONTROL OF BLOOD FLOW BY THE TISSUES

2. LONG TERM BLOOD FLOW REGULATION
 A. CHANGE OF TISSUE VASCULARITY
 B. ANGIOGENESIS
 C. DEVELOPMENT OF COLLATERAL CIRCULATION
Value of Collateral Circulation in the Heart

- In normal heart, there is no communication between large coronary arteries
- But many anastomoses do exist among the smaller arteries (20-250 micrometre in diameter)
- This collateral circulation may delay appearance of ischemic heart symptoms
Vascular remodeling in response to chronic changes in blood flow or blood pressure

LAPLACE LAW

\[T = r \times P \]

- \(T \): Vascular wall tension
- \(r \): radius
- \(P \): pressure
HUMORAL CONTROL OF CIRCULATION

1. VASOCONSTRICCTOR AGENTS •
A. NOREPINEPHRINE AND EPINEPHRINE
B. ANGIOTENSIN II •
C. VASOPRESSIN •
C. ENDOTHELIN •
D. CALCIUM •
E. INDIRECT EFFECT OF CO2 •
HUMORAL CONTROL OF CIRCULATION

2. VASODILATOR AGENTS •
A. BRADYKININ •
B. HISTAMINE •
C. POTASSIUM, MAGNESIUM •
HYDROGEN AND CO2